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■ Abstract Oysters have been introduced worldwide to 73 countries, but the eco-
logical consequences of the introductions are not fully understood. Economically, 
introduced oysters compose a majority of oyster harvests in many areas. Oysters are 
ecosystem engineers that influence many ecological processes, such as maintenance of 
biodiversity, population and food web dynamics, and nutrient cycling. Consequently, 
both their loss, through interaction of overharvest, habitat degradation, disease, poor 
water quality, and detrimental species interactions, and their gain, through introduc-
tions, can cause complex changes in coastal ecosystems. Introductions can greatly 
enhance oyster population abundance and production, as well as populations of as-
sociated native species. However, introduced oysters are also vectors for non-native 
species, including disease-causing organisms. Thus, substantial population, commu-
nity, and habitat changes have accompanied new oysters. In contrast, ecosystem-level 
consequences of oyster introductions, such as impacts on flow patterns, sediment and 
nutrient dynamics, and native bioengineering species, are not well understood. Eco-
logical risk assessments for future introductions must emphasize probabilities of es-
tablishment, spread, and impacts on vulnerable species, communities, and ecosystem 
properties. Many characteristics of oysters lead to predictions that they would be suc-
cessful, high-impact members of recipient ecosystems. This conclusion leaves open 
the discussion of whether such impacts are desirable in terms of restoration of coastal 
ecosystems, especially where restoration of native oysters is possible. 

INTRODUCTION 

Oysters (Family Ostreidae) occupy nearshore marine and estuarine habitats at 
temperate to tropical latitudes worldwide. The hundred or so living Ostreidae 
species include at least 18 species consumed by humans (Carriker & Gaffney 1996). 
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644 RUESINK ET AL. 

Their good flavor and relative accessibility have contributed to the overexploitation 
of many native populations (Menzel 1991). By the mid-1800s, Ostrea edulis in 
Germany, England, and France had experienced 10- to 30-year boom-and-bust 
cycles of yield (Mobius 1877). By the late 1800s, reefs of Crassostrea virginica in 
Chesapeake Bay contained low densities of adult oysters and evidence of poor 
recruitment (Brooks 1891). In western North America, Ostreola conchaphila 
declined severely in yield by two orders of magnitude between 1880 and 1915 
(Ruesink et al. 2005). We do not know if oyster populations were overexploited in 
China, Japan, or Korea because aquaculture began in those countries at least 500 
years ago without record of whether it replaced a failed wild-stock fishery (Kusuki 
1991). 

Oyster fisheries, in which fishers exploit a common resource that is repopu-
lated by natural recruitment, have poor records of sustainability (Kirby 2004). 
Most native populations of oysters have not been successfully restored after over-
exploitation, but instead remain at low population abundance for extended periods 
of time (Grizel & Heral 1991, Utting & Spencer 1992, Rothschild et al. 1994, 
Drinkwaard 1998, Ruesink et al. 2005). Explanations for failure to recover are 
myriad and include continued exploitation, habitat degradation through destruc-
tive fishing practices, disease, reduced water quality, and detrimental species in-
teractions (Lenihan & Peterson 1998, Lenihan et al. 1999, Jackson et al. 2001). 
Aquaculture, on the other hand, can provide long-term productivity by allowing 
growers to “reap what they sow” with seed (newly settled) oysters from hatcheries 
or wild populations. Sometimes aquaculture is focused on native species, for in-
stance, in East Asia (Kusuki 1991, Nie 1991), New Zealand (Dinamani 1991a), 
India (Nagabhushanam & Mane 1991), the Caribbean (Baqueiro 1991), and Cen-
tral (Nascimento 1991) and South America (Velez 1991), and thereby provides 
a form of conservation. This review documents the worldwide changes in oys-
ter populations during recent history. It focuses primarily on the consequences of 
introductions intended to replace and augment native species that have declined 
through overexploitation or other causes. 

Decline of these conspicuous members of the nearshore community has been 
accompanied by economic losses and ecological change. Oysters are ecosystem 
engineers that provide many ecosystem goods and services. As such, they can have 
strong ecosystem-level impacts that must be adequately considered prior to their 
introduction into estuarine, lagoon, and rocky shore coastal ecosystems. Major 
questions concerning future introductions include the following: Do introduced 
oyster species provide the same ecological goods and services provided by native 
species? Can the loss of natural populations be compensated through introductions 
of new oyster species? What are the potential ecological impacts associated with 
both purposeful and unintentional introductions? 

Oyster Introductions 

Oysters have proved highly amenable to aquaculture, and today, exploitation of 
wild populations contributes little to worldwide oyster production (FAO 2002). 
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INTRODUCTION OF NON-NATIVE OYSTERS 645 

Ecological impacts of aquaculture techniques may be substantial in terms of biode-
posits, altered flow regimes, and disturbance of the substrate (Everett et al. 1995); 
other reports indicate low environmental effects (Buschmann et al. 1996, Crawford 
et al. 2003). An assessment of aquaculture impacts is beyond the scope of this re-
view. Our focus is on the ecological roles of oysters themselves. Many oyster 
species have been introduced to new ecosystems through aquaculture. One of the 
first ecologists to sound an alarm about species introductions, Charles Elton, paid 
particular attention to oysters among marine species (Elton 1958): “The greatest 
agency of all that spreads marine animals to new quarters of the world must be the 
business of oyster culture.” Introductions of oysters for aquaculture were already 
widespread by the 1950s, when Elton’s book was published, often to replace ail-
ing populations of native oyster species and sometimes in attempts to develop new 
exportable commodities. 

Rising concern about harmful impacts of non-native species has prompted a 
substantial literature that evaluates risks of oyster introductions. Of course, eco-
logical concerns must be balanced against human need. Introductions of oysters, 
and advances in oyster aquaculture, could provide an important source of protein 
and revenue, particularly in developing countries. 

The volume edited by Mann (1979) covers successful introductions in west-
ern North America, the United Kingdom, and France, in addition to legislation 
and risk assessment for eastern North America. Mann et al. (1991) and Gottlieb 
& Schweighofer (1996) argued strongly for the introduction of new oysters to 
the eastern United States to replace lost ecosystem functions of C. virginica 
[now at less than 1% of historic densities (NRC 2004)]. Chew (1982) compiled 
overviews of North American oyster practices, and Menzel (1991) provided a 
more global perspective. Shatkin et al. (1997) reviewed the consequences of 
oyster introductions in the western United States, France, Australia, and New 
Zealand in their risk assessment for the introduction of Crassostrea gigas to Maine, 
and the Maryland Sea Grant (MDSG 1991) and the National Research Council 
(NRC 2004) presented similar assessments relevant to the possible introduction of 
C. gigas or Crassostrea ariakensis to Chesapeake Bay. Finally, 73 oyster intro-
ductions are on record in a database maintained by the Food and Agriculture 
Organization (FAO/FIGIS) and based on published literature and questionnaires 
(http://www.fao.org/figis/servlet/static?dom=collection&xml=dias.xml). 

These reviews provided a launching point for our analyses, but we have pursued 
a substantially different strategy. Most importantly, we expanded our scope to 
include all oyster introductions, rather than the four or five examples that have 
received most attention. Rather than present information as a series of case studies 
organized by country, we have instead organized by impact and applied data from 
several different areas to each possible introduction outcome. 

In our view, the ecological consequences of oyster introductions have not re-
ceived sufficient critical scrutiny. This conclusion is the only way we can reconcile 
the following disparate statements: “Examples of serious alterations of biotic com-
munities by importations of exotic oysters with their associated faunas are found 
on the maritime coasts of western Europe and western North America” (Andrews 
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646 RUESINK ET AL. 

1980) and “With regard to deliberate introduction of mollusks, none has led to 
significant ecological disruption” (Grizel 1996). Our objectives are to provide a 
detailed examination of the potential ecosystem impacts of oyster introductions, 
thereby extending incomplete ecological assessments made by prior reviews (e.g., 
NRC 2004), and to identify key research priorities. Oyster introductions may, in 
fact, be highly desirable in terms of the ecological goods and services they can 
provide. However, as ecosystem engineers, oysters can have disproportionately 
high impacts, many of which are potentially undesirable (Davis et al. 2000, Shea 
& Chesson 2002, Cuddington & Hastings 2004). This review addresses the general 
ecological role of oysters, then focuses on the ecological impacts of introduced 
oysters, with respect to novel ecosystem impacts. In the final section, we consider 
implications for restoration of nearshore systems where formerly abundant oysters 
have declined. 

OYSTERS AS ECOSYSTEM ENGINEERS 

Understanding the broader ecosystem impacts of oysters and how they vary among 
species is crucial for assessing the realized and potential ecological impacts of non-
native oyster introductions. As ecosystem engineers (Margalef 1968), oysters have 
major impacts in coastal ecosystems: They create habitat used by other species 
and modify the physical and chemical environment with major consequences on 
estuarine populations, communities, and food webs. A critical service provided by 
oysters is the creation of hard-substrate biogenic reefs that form conspicuous habi-
tat in otherwise large expanses of soft-sediment estuarine and lagoonal seascapes. 
Crassostrea virginica forms more extensive reefs than do other oyster species (e.g., 
Rothschild et al. 1994). Available evidence suggests that reefs created by C. gigas 
(mostly in the intertidal) and C. ariakensis (mostly subtidal) are much smaller in 
size, occupy less area in estuaries, and are a more heterogenous mix of shell and 
sediment compared with C. virginica reefs (Ruesink et al. 2003; M. Luckenbach, 
personal communication). Most descriptions of O. edulis, O. conchaphila, and 
Tiostrea chilensis assemblages emphasize mainly loose accumulations of shell in 
the subtidal and intertidal (Mobius 1877, Hopkins 1937, Yonge 1960, Miller & 
Morrison 1988, Chanley & Chanley 1991, Baker 1995). 

Large C. virginica reefs occupy water depths from the high intertidal to deep 
subtidal (>5 m  depth) in estuaries on the Atlantic Coast of the United States. Be-
fore being degraded and reduced in size by destructive harvesting practices, single 
reefs covered areas more than 1 ha and stood over 3 m tall in many subtidal areas 
(Rothschild et al. 1994, Lenihan & Peterson 1998). These reefs are habitat for ses-
sile, mobile, and even infaunal invertebrates, such as sponges, bryozoans, hydroids, 
corals, anemones, tunicates, crabs, shrimp, amphipods, isopods, cumaceans, poly-
chaete, oligochaete, and flat worms (Wells 1961, Bahr & Lanier 1981, Coen et al. 
1999b, Meyer & Townsend 2000). On the West Coast of the United States, reefs 
created by the native O. conchaphila and introduced C. gigas also harbor many 
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INTRODUCTION OF NON-NATIVE OYSTERS 647 

invertebrate species (Armstrong & Gunderson 1985, Miller & Morrison 1988), 
as do subtidal reefs in New Zealand created by T. chilensis, tunicates, bryozoans, 
and mussels (Cranfield et al. 1998, 2004). Crassostrea spp. and O. conchaphila 
reefs also support other bivalves, including mussels such as Geukensia spp. and 
clams such as Macoma spp., Ensis spp., Mya arenaria, and Mercenaria merce-
naria (Miller & Morrison 1988, Micheli & Peterson 1999). Invertebrates occupy 
reefs because they provide refuge from predators and environmental stress, attach-
ment surfaces, and populations of prey (Fernandez et al. 1993, Bartol & Mann 
1999, Posey et al. 1999, Dumbauld et al. 2000). Many fishes utilize reefs as re-
cruitment substrate (e.g., gobies, blennies, clingerfish, and oyster toadfish) (Hardy 
1978a,b, Breitburg 1999, Lenihan et al. 2001, Grabowski 2004), nursery habitat 
(e.g., red drum, silver perch, pinfish, pigfish, and flounder) (Lenihan et al. 2001), 
and foraging ground (weakfish, bluefish, Atlantic croaker, pinfish, striped bass, 
mummichog, flounder, pigfish, toadfish, silver perch, and pompano) (Harding & 
Mann 2001a,b, 2003, Lenihan et al. 2001, Carbines et al. 2004). 

The contribution of oysters as food for fish and invertebrates varies among 
species and locations. Bishop & Peterson (2005) found that blue crabs (Callinectes 
sapidus) in  North Carolina had higher predation rates on non-native C. ariakensis 
than on native C. virginica because the shells of C. ariakensis are thinner than the 
native species, which makes them easier for crabs to crush. Relatively thin shells 
allow C. ariakensis faster growth rates than C. virginica (Grabowski et al. 2004). 
In addition, the physical structure of reef habitat is an important determinant of the 
foraging efficiency of consumers and other associated bivalves. Predation rates 
by the mud crab Panopeus herbstii are greatest in dense, structurally complex 
oyster beds because physical complexity likely decreases competitive interference 
among predators (Grabowski & Powers 2004). Similarly, blue crab predation on 
C. virginica is density-dependent, and foraging efficiency increases linearly with 
prey density (Eggleston 1990). Thus, variation in the shell morphologies, densities, 
and reef structural characteristics among different oyster species are important 
factors in the value of oysters as food resources for estuarine species. 

Oyster populations and reef habitat also serve important ecosystem functions 
that extend beyond reef structures. Reefs influence the flow of water within estu-
aries and, in doing so, modify patterns of sediment deposition, consolidation, and 
stabilization (Dame & Patten 1981). Reefs disrupt flow on open bottoms or within 
tidal channels, and thereby create depositional zones, usually downstream of the 
reef structure, that accumulate sediment and organic material (Lenihan 1999). The 
alteration of flow and the physical barrier imposed by reefs influences the distribu-
tion and abundance of other biogenic habitats, such as seagrass beds, salt marshes, 
and algal beds, by preventing the erosion of channel banks, stabilizing and pro-
tecting the edges of salt marshes (Coen et al. 1999a), and providing attachment 
substrate for algae (Everett et al. 1995). Alteration of flow by reefs also influences 
biotic processes. Deposition of particles is enhanced downstream of reefs because 
of eddy formation, which thereby enhances settlement of fish (Breitburg et al. 
1995) and invertebrate (Lenihan 1999) larvae. Acceleration of flow over reefs and 
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648 RUESINK ET AL. 

the associated increase in the delivery rate of suspended food particles increases 
oyster growth, condition, and survivorship (Lenihan et al. 1995, Lenihan 1999) 
and influences in complex ways oyster disease dynamics (Lenihan et al. 1999). 
Enhanced flow probably has similar positive effects on other suspension feeders 
that inhabit reefs, such as tunicates, sponges, and bivalves. 

Oyster populations influence energy flow and geochemical and ecological pro-
cesses at the spatial scale of estuaries because they can filter large volumes of 
water through active suspension feeding. Oysters remove particles from the water 
column during suspension feeding and convert them to benthic sediments (feces 
and pseudofeces) and production (growth). Filtration rates are generally size re-
lated (Powell et al. 1992), and the relatively large size and high densities reached 
by oysters allow them to influence water properties and nutrient cycling. Research 
on C. virginica indicates that suspension feeding by oysters can reduce local con-
centrations of suspended solids, carbon, and chlorophyll a but increase ammonia 
and local deposition of fine-grained sediment and detritus (Dame 1976; Dame 
et al. 1984, 1986, 1992; Nelson et al. 2004). The removal of particulate matter 
through suspension feeding increases water clarity, which probably has a posi-
tive influence on the growth and abundance of seagrass and other benthic primary 
producers (Peterson & Heck 1999, Newell 2004, Newell & Koch 2004). Newell 
(1988) calculated that oyster abundance in Chesapeake Bay before 1870 was high 
enough that oysters could filter the entire volume of the bay in about 3 days, but 
after nearly a century of exploitation and habitat destruction, the reduced popula-
tions require 325 days to perform the same activity (see also Coen & Luckenbach 
2000). Along with increased nutrient loading, loss of massive suspension-feeding 
capacity in Chesapeake Bay and other systems is thought to have caused shifts 
from primarily benthic to pelagic primary production, increased blooms of nui-
sance algae, and shifts in community dominance from macrophytes and nekton 
to bacteria and jellyfish (Jackson et al. 2001). Different oyster species exhibit 
significant variation in filtration rates. Filtration rates increase with size and re-
sult, for example, in higher filtration rates for larger (frequently cultivated) Cras-
sostrea species as compared with the small-sized Ostreola species (Powell et al. 
1992). 

The influences of oyster habitat on associated populations, assemblages, and 
ecological processes can extend beyond the oyster reefs into adjacent habitats. 
Spatial configuration of estuarine habitats, such as salt marshes, seagrass beds, 
and oyster reefs, affects their use by fish and crustaceans, predator-prey interac-
tions within each habitat type, and resulting diversity and structure of resident 
assemblages (Irlandi & Crawford 1997, Micheli & Peterson 1999). The specific 
locations, sizes, and relative proximity of introduced oyster reefs to native habitat 
patches is expected to influence their function as habitat and food for inverte-
brates and fish and possibly their influences on water quality, sediment erosion 
rates, and hydrodynamic patterns within estuaries. Thus, the ecological role and 
the effects of introduced oysters in estuaries and bays are likely to depend on 
context. 
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INTRODUCTION OF NON-NATIVE OYSTERS 649 

CONSEQUENCES OF OYSTER INTRODUCTIONS 

We compiled published records of both introductions and transplantations of oys-
ters on a country-by-country basis (Table 1). In total, we collected 182 records 
(168 introductions and 14 transplants) of 18 oyster species moved to 73 countries 
(or smaller regions). Almost all oyster introductions have occurred through oyster 
aquaculture; however, the introduction of the mangrove oyster (C. rhizophorae) 
from Brazil to the United Kingdom for research purposes and its subsequent erad-
ication provides a notable exception (Spencer 2002). 

Oyster introductions probably occurred as early as the seventeeth century, when 
the so-called Portuguese oyster (Crassostrea angulata) arrived in Europe from Asia 
(Carlton 1999). Overall, oysters have been introduced and established permanently 
in at least 24 countries outside their native ranges and have been introduced with-
out successful establishment in 55 countries. Status of the remaining introductions 
is undocumented (Table 1). Most introductions (66) were of C. gigas, of  which 17 
established and 23 did not. C. gigas has been imported to most of the temperate 
zone (and some tropical areas) worldwide (Figure 1). It is one of the most cos-
mopolitan macroscropic marine invertebrates. Other widely introduced species 
include C. virginica (14 cases), O. edulis (11 cases), and Saccostrea commer-
cialis (6 cases); these species had slightly lower rates of establishment. France 
has been the recipient of the most introduced species; eight species were brought 
in for aquaculture or research in the past 150 years. The United Kingdom, Fiji, 
Tonga, and the US (West Coast), each received six introductions (Table 1). Only 
a few instances exist of an oyster arriving in a new location without deliberate 
introduction. C. gigas appeared on the northwest coast of New Zealand through 
an unknown pathway, potentially hull fouling from Asian boats or larval trans-
port from Australia (Dinamani 1991a), and this species has also spread through 
the Mediterranean Sea after deliberate introduction to France and Italy (Galil 
2000). 

Failed introductions of C. gigas were the result mostly of transport to locations 
that are too warm and oligotrophic for survival of the species [Pacific Oceania 
(Eldredge 1994)] or too cold for successful reproduction (Alaska). For example, 
on Madeira Island in the subtropical Atlantic, C. gigas introduced at about half 
market size grew in shell dimensions but lost glycogen, and more than 70% died 
within 5 months (Kaufmann et al. 1994). However, even in “successful” introduc-
tions, particularly on western continental shores, spatfall occurs only in restricted 
locations that retain larvae and exceed critical temperatures (e.g., 18◦C to 20◦C 
for spawning and higher than 16◦C for larval development in C. gigas) for several 
weeks. So, for instance, natural recruitment in western North America occurs reg-
ularly in perhaps only three locations in British Columbia, Canada, and in Hood 
Canal and Willapa Bay in Washington state (Kincaid 1951, Quayle 1969). The 
crash in summer 2004 of C. gigas populations introduced to France are causing 
concern that another case of a failed introduction is developing (P. Garcia Meunier, 
personal communication). 

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

00
5.

36
:6

43
-6

89
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

20 Oct 2005 12:44 AR ANRV259-ES36-27.tex XMLPublishSM(2004/02/24) P1: OJO

by
 U

N
IV

E
R

SI
T

Y
 O

F 
W

A
SH

IN
G

T
O

N
 -

 H
E

A
L

T
H

 S
C

IE
N

C
E

S 
L

IB
R

A
R

IE
S 

on
 0

1/
05

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



650 RUESINK ET AL. 
T

A
B

L
E

 1
 

O
ys

te
r 

in
tr

od
uc

tio
ns

 f
ro

m
 o

ne
 c

ou
nt

ry
 (

or
 s

m
al

le
r 

re
gi

on
) 

to
 a

no
th

er
 c

ou
nt

ry
 (

or
 s

m
al

le
r 

re
gi

on
) 

ou
ts

id
e 

an
d 

in
si

de
 th

e 
na

tiv
e 

ra
ng

e
of

 th
e 

sp
ec

ie
s

In
tr

od
uc

ed
 t

o 
Sp

ec
ie

s 
In

tr
od

uc
ed

fr
om

 
D

at
e 

E
st

ab
lis

he
d

(y
es

/n
o,

 d
at

e
if

 k
no

w
n)

 
C

ur
re

nt
aq

ua
cu

lt
ur

e?
 

R
ef

er
en

ce
s 

A
lg

er
ia

 
C

ra
ss

os
tr

ea
 g

ig
as

 
<

19
84

 
Y

es
 

FA
O

 2
00

2a
, Z

ib
ro

w
iu

s
19

92
 

A
rg

en
tin

a 
C

ra
ss

os
tr

ea
 g

ig
as

 
C

hi
le

 
19

82
 

19
87

 
Y

es
 

O
re

ns
an

z 
et

 a
l. 

20
02

A
us

tr
al

ia
 (

N
ew

So
ut

h 
W

al
es

) 
C

ra
ss

os
tr

ea
 g

ig
as

 
A

us
tr

al
ia

(V
ic

to
ri

a,
Ta

sm
an

ia
) 

19
67

a 
19

85
 

Y
es

 
C

he
w

 1
99

0,
 P

ol
la

rd
 &

H
ut

ch
in

gs
 1

99
0,

A
yr

es
 1

99
1 

A
us

tr
al

ia
(T

as
m

an
ia

) 
Ti

os
tr

ea
 c

hi
le

ns
is

 
N

ew
 Z

ea
la

nd
 

19
69

 
Po

lla
rd

 &
 H

ut
ch

in
gs

19
90

 

A
us

tr
al

ia
(V

ic
to

ri
a)

 
C

ra
ss

os
tr

ea
 g

ig
as

 
A

us
tr

al
ia

(T
as

m
an

ia
) 

19
55

 
Y

es
 

Y
es

 
T

ho
m

so
n 

19
59

 

A
us

tr
al

ia
(W

es
te

rn
A

us
tr

al
ia

,
Ta

sm
an

ia
) 

C
ra

ss
os

tr
ea

 g
ig

as
 

Ja
pa

n 
19

47
–1

97
0 

Y
es

 
Y

es
 

T
ho

m
so

n 
19

52
, 1

95
9,

C
he

w
 1

99
0,

 P
ol

la
rd

 &
H

ut
ch

in
gs

 1
99

0,
FA

O
/F

IG
IS

 

B
ah

am
as

 
C

ra
ss

os
tr

ea
vi

rg
in

ic
a 

N
o 

G
lu

de
 1

98
1,

 M
an

n
19

83
 

B
el

gi
um

 
C

ra
ss

os
tr

ea
 g

ig
as

 
19

90
a 

Y
es

 
C

ou
tte

au
 e

t a
l. 

19
97

,
FA

O
/F

IG
IS

 

B
el

iz
e 

C
ra

ss
os

tr
ea

 g
ig

as
 

U
ni

te
d 

St
at

es
(U

SA
) 

(w
es

t)
 

19
80

 
C

he
w

 1
99

0,
FA

O
/F

IG
IS

 

B
ra

zi
l 

C
ra

ss
os

tr
ea

 g
ig

as
 

C
hi

le
 

<
19

89
 

U
nl

ik
el

y 
Y

es
 

N
as

ci
m

en
to

 1
99

1,
Ta

va
re

s 
20

03
 

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

00
5.

36
:6

43
-6

89
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

20 Oct 2005 12:44 AR ANRV259-ES36-27.tex XMLPublishSM(2004/02/24) P1: OJO

by
 U

N
IV

E
R

SI
T

Y
 O

F 
W

A
SH

IN
G

T
O

N
 -

 H
E

A
L

T
H

 S
C

IE
N

C
E

S 
L

IB
R

A
R

IE
S 

on
 0

1/
05

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



INTRODUCTION OF NON-NATIVE OYSTERS 651 

C
an

ad
a 

(e
as

t)
 

O
st

re
a 

ed
ul

is
 

U
K

 
19

57
–1

95
9 

N
o 

M
an

n 
19

83
, C

he
w

19
90

, H
id

u 
&

 L
av

oi
e

19
91

, F
A

O
/F

IG
IS

C
an

ad
a 

(w
es

t)
 

C
ra

ss
os

tr
ea

 g
ig

as
 

Ja
pa

n,
 U

SA
(w

es
t)

 
19

12
–1

97
7 

19
25

 
Y

es
 

B
ou

rn
e 

19
79

, C
he

w
19

90
, F

A
O

/F
IG

IS
C

ra
ss

os
tr

ea
vi

rg
in

ic
a 

U
SA

 (
ea

st
),

C
an

ad
a 

(e
as

t)
 

18
83

–1
94

0 
19

17
 

St
af

fo
rd

 1
91

3,
 B

ou
rn

e
19

79
, C

ar
lto

n 
&

M
an

n 
19

96
 

C
ha

nn
el

 I
sl

an
ds

[U
ni

te
d

K
in

gd
om

(U
K

)]
 

C
ra

ss
os

tr
ea

 g
ig

as
 

<
19

86
 

Y
es

 
FA

O
 2

00
2a

 

C
hi

le
 

C
ra

ss
os

tr
ea

 g
ig

as
 

U
SA

 (
w

es
t)

 
19

83
 

Y
es

 
C

he
w

 1
99

0,
B

us
ch

m
an

n 
et

 a
l.

19
96

, F
A

O
/F

IG
IS

C
hi

na
 

C
ra

ss
os

tr
ea

 g
ig

as
c 

Ja
pa

n 
19

79
 

Ta
n 

&
 T

on
g 

19
89

,
FA

O
/F

IG
IS

 

C
os

ta
 R

ic
a 

C
ra

ss
os

tr
ea

 g
ig

as
 

U
SA

 (
w

es
t)

 
19

79
 

M
an

n 
19

83
, C

he
w

19
90

, F
A

O
/F

IG
IS

C
ro

at
ia

 
C

ra
ss

os
tr

ea
 g

ig
as

 
19

80
a 

U
nl

ik
el

y 
Z

ib
ro

w
iu

s 
19

92
, G

al
il

20
00

 

D
en

m
ar

k 
C

ra
ss

os
tr

ea
 g

ig
as

 
U

SA
 (

w
es

t)
,

G
er

m
an

y 
19

80
 

Y
es

 
U

nl
ik

el
y 

M
an

n 
19

83
, C

he
w

19
90

, F
A

O
/F

IG
IS

C
ra

ss
os

tr
ea

vi
rg

in
ic

a 
C

an
ad

a 
(e

as
t)

 
18

80
–1

93
0 

N
o 

U
nl

ik
el

y 
C

ar
lto

n 
&

 M
an

n 
19

96
 

E
cu

ad
or

 
C

ra
ss

os
tr

ea
 g

ig
as

 
U

SA
 (

w
es

t)
,

C
hi

le
 

19
80

 
N

o 
Y

es
 

C
he

w
 1

99
0,

FA
O

/F
IG

IS (C
on

ti
nu

ed
 ) 

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

00
5.

36
:6

43
-6

89
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

20 Oct 2005 12:44 AR ANRV259-ES36-27.tex XMLPublishSM(2004/02/24) P1: OJO

by
 U

N
IV

E
R

SI
T

Y
 O

F 
W

A
SH

IN
G

T
O

N
 -

 H
E

A
L

T
H

 S
C

IE
N

C
E

S 
L

IB
R

A
R

IE
S 

on
 0

1/
05

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



652 RUESINK ET AL. 
T

A
B

L
E

 1
 

(C
on

ti
nu

ed
 ) 

In
tr

od
uc

ed
 t

o 
Sp

ec
ie

s 
In

tr
od

uc
ed

fr
om

 
D

at
e 

E
st

ab
lis

he
d

(y
es

/n
o,

 d
at

e
if

 k
no

w
n)

 
C

ur
re

nt
aq

ua
cu

lt
ur

e?
 

R
ef

er
en

ce
s 

Fi
ji 

C
ra

ss
os

tr
ea

ec
hi

na
ta

 
A

us
tr

al
ia

, T
ah

iti
 

19
10

, 1
98

1 
N

o 
N

o 
E

ld
re

dg
e 

19
94

 

C
ra

ss
os

tr
ea

 g
ig

as
 

Ja
pa

n,
U

SA
 (

w
es

t)
,

A
us

tr
al

ia
,

Ph
ili

pp
in

es
 

19
68

–1
97

7 
U

nl
ik

el
y 

B
ou

rn
e 

19
79

, E
ld

re
dg

e
19

94
, F

A
O

/F
IG

IS
 

C
ra

ss
os

tr
ea

ir
ed

al
ei

 
Ph

ili
pp

in
es

 
19

75
–1

97
6 

U
nl

ik
el

y 
E

ld
re

dg
e 

19
94

,
FA

O
/F

IG
IS

 
C

ra
ss

os
tr

ea
vi

rg
in

ic
a 

H
aw

ai
i 

19
70

 
E

ld
re

dg
e 

19
94

,
FA

O
/F

IG
IS

 
O

st
re

a 
ed

ul
is

 
Ja

pa
n 

19
77

 
U

nl
ik

el
y 

E
ld

re
dg

e 
19

94
,

FA
O

/F
IG

IS
 

Sa
cc

os
tr

ea
co

m
m

er
ci

al
is

 
U

SA
 (

w
es

t)
,

A
us

tr
al

ia
 

18
80

,
19

70
–1

97
3 

N
o 

B
ou

rn
e 

19
79

, E
ld

re
dg

e
19

94
 

Fr
an

ce
 

C
ra

ss
os

tr
ea

an
gu

la
ta

 
Po

rt
ug

al
 

18
68

 
U

nl
ik

el
y 

N
o 

lo
ng

er
 

A
nd

re
w

s 
19

80
 

C
ra

ss
os

tr
ea

ar
ia

ke
ns

is
 

U
SA

 (
w

es
t)

 
N

o 
N

o 
N

R
C

 2
00

4 

C
ra

ss
os

tr
ea

de
ns

al
am

el
lo

sa
 

K
or

ea
 

19
82

 
U

nl
ik

el
y 

M
an

n 
19

83
 

C
ra

ss
os

tr
ea

 g
ig

as
 

Ja
pa

n,
C

an
ad

a 
(w

es
t)

 
19

66
–1

97
7 

19
75

 
Y

es
 

A
nd

re
w

s 
19

80
, M

an
n

19
83

, C
he

w
 1

99
0,

G
ri

ze
l &

 H
er

al
 1

99
1,

H
er

al
 &

D
es

lo
us

-P
ao

li 
19

91
,

FA
O

/F
IG

IS
 

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

00
5.

36
:6

43
-6

89
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

20 Oct 2005 12:44 AR ANRV259-ES36-27.tex XMLPublishSM(2004/02/24) P1: OJO

by
 U

N
IV

E
R

SI
T

Y
 O

F 
W

A
SH

IN
G

T
O

N
 -

 H
E

A
L

T
H

 S
C

IE
N

C
E

S 
L

IB
R

A
R

IE
S 

on
 0

1/
05

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



INTRODUCTION OF NON-NATIVE OYSTERS 653 

C
ra

ss
os

tr
ea

rh
iz

op
ho

ra
e 

Fr
en

ch
 G

uy
an

a 
19

76
–1

97
8 

U
nl

ik
el

y 
U

nl
ik

el
y 

M
au

ri
n 

&
 G

ra
s 

19
79

 

C
ra

ss
os

tr
ea

vi
rg

in
ic

a 
U

SA
 (

ea
st

) 
18

61
–1

87
5 

N
o 

N
o 

C
ar

lto
n 

&
 M

an
n 

19
96

 

O
st

re
a 

pu
el

ch
an

a 
A

rg
en

tin
a 

19
90

 
Pa

sc
ua

l e
t a

l. 
19

91
Ti

os
tr

ea
 c

hi
le

ns
is

 
C

hi
le

 
19

81
 

N
o 

U
nl

ik
el

y 
M

an
n 

19
83

 
O

st
re

a 
ed

ul
is

c 
U

SA
 (

w
es

t)
 

19
70

 
C

he
w

 1
99

0,
FA

O
/F

IG
IS

 

Fr
en

ch
 P

ol
yn

es
ia

 
C

ra
ss

os
tr

ea
ec

hi
na

ta
 

N
ew

 C
al

ed
on

ia
 

19
72

–1
98

3 
U

nl
ik

el
y 

E
ld

re
dg

e 
19

94
 

C
ra

ss
os

tr
ea

 g
ig

as
 

U
SA

 (
w

es
t)

 
19

72
–1

97
6 

U
nl

ik
el

y 
U

nl
ik

el
y 

E
ld

re
dg

e 
19

94
,

FA
O

/F
IG

IS
 

G
er

m
an

y 
C

ra
ss

os
tr

ea
an

gu
la

ta
 

19
61

 
U

nl
ik

el
y 

D
ri

nk
w

aa
rd

 1
99

9 

C
ra

ss
os

tr
ea

 g
ig

as
 

Sc
ot

la
nd

 
19

71
 

19
91

 
Y

es
 

G
ol

la
sc

h 
&

 R
os

en
th

al
19

94
, D

ri
nk

w
aa

rd
19

99
 

C
ra

ss
os

tr
ea

vi
rg

in
ic

a 
U

K
 

19
13

 
N

o 
C

ar
lto

n 
&

 M
an

n 
19

96
,

D
ri

nk
w

aa
rd

 1
99

9,
W

ol
ff

 &
 R

ei
se

 2
00

2
O

st
re

a 
ed

ul
is

c 
D

ri
nk

w
aa

rd
 1

99
9

G
re

ec
e 

C
ra

ss
os

tr
ea

 g
ig

as
 

U
nl

ik
el

y 
Z

ib
ro

w
iu

s 
19

92

G
ua

m
 

C
ra

ss
os

tr
ea

ec
hi

na
ta

 
Pa

la
u 

19
79

 
U

nl
ik

el
y 

E
ld

re
dg

e 
19

94
 

C
ra

ss
os

tr
ea

 g
ig

as
 

Ta
iw

an
 

19
75

 
N

o 
U

nl
ik

el
y 

E
ld

re
dg

e 
19

94
,

FA
O

/F
IG

IS
 

Sa
cc

os
tr

ea
cu

cu
ll

at
a 

So
lo

m
on

 I
sl

an
ds

 
19

78
 

U
nl

ik
el

y 
E

ld
re

dg
e 

19
94 (C

on
ti

nu
ed

 ) 

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

00
5.

36
:6

43
-6

89
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

20 Oct 2005 12:44 AR ANRV259-ES36-27.tex XMLPublishSM(2004/02/24) P1: OJO

by
 U

N
IV

E
R

SI
T

Y
 O

F 
W

A
SH

IN
G

T
O

N
 -

 H
E

A
L

T
H

 S
C

IE
N

C
E

S 
L

IB
R

A
R

IE
S 

on
 0

1/
05

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



654 RUESINK ET AL. 
T

A
B

L
E

 1
 

(C
on

ti
nu

ed
 ) 

In
tr

od
uc

ed
 t

o 
Sp

ec
ie

s 
In

tr
od

uc
ed

 f
ro

m
 

D
at

e 

E
st

ab
lis

he
d

(y
es

/n
o,

 d
at

e
if

 k
no

w
n)

 
C

ur
re

nt
aq

ua
cu

lt
ur

e?
 

R
ef

er
en

ce
s 

Ir
el

an
d 

C
ra

ss
os

tr
ea

 g
ig

as
 

Fr
an

ce
, U

K
 

<
19

93
 

Y
es

 
FA

O
/F

IG
IS

 

C
ra

ss
os

tr
ea

vi
rg

in
ic

a 
N

o 
U

nl
ik

el
y 

W
en

t 1
96

2,
 C

ar
lto

n 
&

M
an

n 
19

96
 

Is
ra

el
 

C
ra

ss
os

tr
ea

 g
ig

as
 

U
K

 
19

76
 

U
nl

ik
el

y 
Y

es
 

H
ug

he
s-

G
am

es
 1

97
7,

C
he

w
 1

99
0 

O
st

re
a 

ed
ul

is
 

U
K

 
19

76
 

Sh
pi

ge
l 1

98
9 

It
al

y 
C

ra
ss

os
tr

ea
an

gu
la

ta
 

Po
rt

ug
al

 
18

50
 

U
nl

ik
el

y 
Z

ib
ro

w
iu

s 
19

92
, G

al
il

20
00

 
C

ra
ss

os
tr

ea
 g

ig
as

 
Fr

an
ce

 
19

72
 

L
ik

el
y 

G
al

il 
20

00
, F

A
O

/F
IG

IS
Sa

cc
os

tr
ea

co
m

m
er

ci
al

is
 

A
us

tr
al

ia
 

19
85

 
L

ik
el

y 
Z

ib
ro

w
iu

s 
19

92
, G

al
il

20
00

, 2
00

3 

Ja
pa

n 
C

ra
ss

os
tr

ea
vi

rg
in

ic
a 

U
SA

 
19

68
 

C
hi

ba
 e

t a
l. 

19
89

,
FA

O
/F

IG
IS

 
O

st
re

a 
ed

ul
is

 
Fr

an
ce

 
19

52
 

FA
O

/F
IG

IS
 

O
st

re
ol

a
co

nc
ha

ph
il

a 
U

SA
 (

w
es

t)
 

19
48

 
FA

O
/F

IG
IS

 

C
ra

ss
os

tr
ea

 g
ig

as
c 

U
SA

 (
w

es
t)

 
19

80
 

C
he

w
 1

99
0,

FA
O

/F
IG

IS
 

K
or

ea
 R

ep
ub

lic
 

C
ra

ss
os

tr
ea

 g
ig

as
c 

U
SA

 (
w

es
t)

 
19

80
 

C
he

w
 1

99
0,

FA
O

/F
IG

IS
 

M
ad

ei
ra

 I
sl

an
d

(s
ub

tr
op

ic
al

A
tla

nt
ic

) 

C
ra

ss
os

tr
ea

 g
ig

as
 

U
K

 
19

91
 

N
o 

K
au

fm
an

n 
et

 a
l. 

19
94

 

M
al

ay
si

a 
C

ra
ss

os
tr

ea
 g

ig
as

 
U

SA
 (

w
es

t)
 

19
80

 
C

he
w

 1
99

0,
FA

O
/F

IG
IS

 

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

00
5.

36
:6

43
-6

89
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

20 Oct 2005 12:44 AR ANRV259-ES36-27.tex XMLPublishSM(2004/02/24) P1: OJO

by
 U

N
IV

E
R

SI
T

Y
 O

F 
W

A
SH

IN
G

T
O

N
 -

 H
E

A
L

T
H

 S
C

IE
N

C
E

S 
L

IB
R

A
R

IE
S 

on
 0

1/
05

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



INTRODUCTION OF NON-NATIVE OYSTERS 655 

M
au

ri
tiu

s 
(I

nd
ia

n
O

ce
an

) 
C

ra
ss

os
tr

ea
 g

ig
as

 
U

SA
 (

w
es

t)
 

19
71

 
U

nl
ik

el
y 

L
ik

el
y 

B
ou

rn
e 

19
79

,
M

ac
do

na
ld

 e
t a

l. 
20

03
C

ra
ss

os
tr

ea
vi

rg
in

ic
a 

U
SA

 (
w

es
t)

 
19

72
 

L
ik

el
y 

M
ac

do
na

ld
 e

t a
l. 

20
03

 

O
st

re
a 

ed
ul

is
 

U
SA

 (
w

es
t)

 
19

72
 

L
ik

el
y 

M
ac

do
na

ld
 e

t a
l. 

20
03

Sa
cc

os
tr

ea
co

m
m

er
ci

al
is

 
A

us
tr

al
ia

 
19

67
 

L
ik

el
y 

M
ac

do
na

ld
 e

t a
l. 

20
03

 

M
ex

ic
o 

(e
as

t)
 

C
ra

ss
os

tr
ea

 g
ig

as
 

FA
O

 2
00

2a
 

M
ex

ic
o 

(w
es

t)
 

C
ra

ss
os

tr
ea

 g
ig

as
 

U
SA

 (
w

es
t)

 
19

73
 

Y
es

 
Y

es
 

Is
la

s 
19

75
, C

he
w

 1
99

0,
FA

O
/F

IG
IS

 
C

ra
ss

os
tr

ea
vi

rg
in

ic
a 

C
ar

lto
n 

&
 M

an
n 

19
96

 

M
or

oc
co

 
C

ra
ss

os
tr

ea
 g

ig
as

 
Fr

an
ce

 
<

19
66

 
Y

es
 

Sh
af

ee
 &

 S
ab

at
ie

 1
98

6,
C

he
w

 1
99

0 

M
ya

nm
ar

 
C

ra
ss

os
tr

ea
 g

ig
as

 
U

nl
ik

el
y 

w
w

w
.f

ao
.o

rg
/d

oc
um

en
ts

/
sh

ow
 c

dr
.a

sp
?u

rl
fil

e 
/d

oc
re

p/
00

4/
ad

49
7e

/
ad

49
7e

05
.h

tm
 

N
am

ib
ia

 
C

ra
ss

os
tr

ea
 g

ig
as

 
C

hi
le

 
19

90
 

N
o 

Y
es

 
FA

O
/F

IG
IS

; P
.

Sc
hn

ei
de

r, 
pe

rs
on

al
co

m
m

un
ic

at
io

n
O

st
re

a 
ed

ul
is

 
19

90
 

FA
O

/F
IG

IS
 

N
et

he
rl

an
ds

 
C

ra
ss

os
tr

ea
an

gu
la

ta
 

Po
rt

ug
al

 
18

00
s 

W
ol

ff
 &

 R
ei

se
 2

00
2 

C
ra

ss
os

tr
ea

 g
ig

as
 

C
an

ad
a 

(w
es

t)
,

B
el

gi
um

,
Fr

an
ce

, U
SA

(w
es

t)
 

19
64

–1
98

1 
19

76
 

Y
es

 
C

he
w

 1
99

0,
D

ri
nk

w
aa

rd
 1

99
9,

FA
O

/F
IG

IS (C
on

ti
nu

ed
 ) 

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

00
5.

36
:6

43
-6

89
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

20 Oct 2005 12:44 AR ANRV259-ES36-27.tex XMLPublishSM(2004/02/24) P1: OJO

= 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
W

A
SH

IN
G

T
O

N
 -

 H
E

A
L

T
H

 S
C

IE
N

C
E

S 
L

IB
R

A
R

IE
S 

on
 0

1/
05

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



656 RUESINK ET AL. 

T
A

B
L

E
 1

 
(C

on
ti

nu
ed

 ) 

In
tr

od
uc

ed
 t

o 
Sp

ec
ie

s 
In

tr
od

uc
ed

fr
om

 
D

at
e 

E
st

ab
lis

he
d

(y
es

/n
o,

 d
at

e
if

 k
no

w
n)

 
C

ur
re

nt
aq

ua
cu

lt
ur

e?
 

R
ef

er
en

ce
s 

C
ra

ss
os

tr
ea

vi
rg

in
ic

a 
U

SA
 (

ea
st

),
 U

K
 

19
39

–1
94

0 
N

o 
U

nl
ik

el
y 

C
ar

lto
n 

&
 M

an
n 

19
96

,
W

ol
ff

 &
 R

ei
se

 2
00

2
C

ra
ss

os
tr

ea
si

ka
m

ea
 

19
64

 
D

ri
nk

w
aa

rd
 1

99
9 

O
st

re
a 

ed
ul

is
c 

Fr
an

ce
, G

re
ec

e,
Ir

el
an

d,
 I

ta
ly

,
U

K
, N

or
w

ay
 

19
63

–1
97

7 
D

ri
nk

w
aa

rd
 1

99
9 

N
ew

 C
al

ed
on

ia
 

C
ra

ss
os

tr
ea

ec
hi

na
ta

 
Ta

hi
ti 

19
79

–1
98

0 
U

nl
ik

el
y 

E
ld

re
dg

e 
19

94
 

C
ra

ss
os

tr
ea

 g
ig

as
 

Ja
pa

n,
U

SA
 (

w
es

t)
,

A
us

tr
al

ia
, T

ah
iti

 

19
67

–1
97

7 
U

nl
ik

el
y 

Y
es

 
B

ou
rn

e 
19

79
, E

ld
re

dg
e

19
94

, F
A

O
/F

IG
IS

 

Sa
cc

os
tr

ea
co

m
m

er
ci

al
is

 
A

us
tr

al
ia

 
19

71
 

U
nl

ik
el

y 
U

nl
ik

el
y 

E
ld

re
dg

e 
19

94
 

N
ew

 H
eb

ri
de

s 
C

ra
ss

os
tr

ea
 g

ig
as

 
U

SA
 (

w
es

t)
 

19
72

–1
97

3 
N

o 
B

ou
rn

e 
19

79
 

N
ew

 Z
ea

la
nd

 
C

ra
ss

os
tr

ea
 g

ig
as

 
Ja

pa
n 

or
 A

us
tr

al
ia

(V
ic

to
ri

a,
Ta

sm
an

ia
) 

19
58

a 
Y

es
 Y

es
 

C
he

w
 1

99
0,

 P
ol

la
rd

 &
H

ut
ch

in
gs

 1
99

0,
FA

O
/F

IG
IS

 
O

st
re

a 
ed

ul
is

 
18

69
 

N
o 

C
ra

nfi
el

d 
et

 a
l. 

19
98

N
or

w
ay

 
C

ra
ss

os
tr

ea
 g

ig
as

 
U

SA
 (

w
es

t)
 

19
85

 
Y

es
 

C
he

w
 1

99
0,

FA
O

/F
IG

IS
 

Pa
la

u 
C

ra
ss

os
tr

ea
 g

ig
as

 
U

SA
 (

w
es

t)
 

19
72

–1
97

3 
U

nl
ik

el
y 

B
ou

rn
e 

19
79

, E
ld

re
dg

e
19

94
, F

A
O

/F
IG

IS
 

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

00
5.

36
:6

43
-6

89
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

20 Oct 2005 12:44 AR ANRV259-ES36-27.tex XMLPublishSM(2004/02/24) P1: OJO

by
 U

N
IV

E
R

SI
T

Y
 O

F 
W

A
SH

IN
G

T
O

N
 -

 H
E

A
L

T
H

 S
C

IE
N

C
E

S 
L

IB
R

A
R

IE
S 

on
 0

1/
05

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



INTRODUCTION OF NON-NATIVE OYSTERS 657 
Pe

ru
 

C
ra

ss
os

tr
ea

 g
ig

as
 

<
19

97
 

FA
O

 2
00

2a
 

Ph
ili

pp
in

es
 

C
ra

ss
os

tr
ea

 g
ig

as
 

Ja
pa

n 
L

ik
el

y 
Ju

lia
no

 e
t a

l. 
19

89
,

FA
O

/F
IG

IS
 

Po
rt

ug
al

 
C

ra
ss

os
tr

ea
an

gu
la

ta
 

Y
es

 
A

nd
re

w
s 

19
80

 

C
ra

ss
os

tr
ea

 g
ig

as
 

Fr
an

ce
, U

SA
(w

es
t)

 
19

77
 

L
ik

el
y 

C
he

w
 1

99
0,

FA
O

/F
IG

IS
 

Pu
er

to
 R

ic
o 

C
ra

ss
os

tr
ea

 g
ig

as
 

U
SA

 (
w

es
t)

 
19

80
 

N
o 

C
he

w
 1

99
0,

FA
O

/F
IG

IS
 

C
ra

ss
os

tr
ea

vi
rg

in
ic

ad 
N

o 
W

al
te

rs
 &

 P
ri

ns
lo

w
19

75
, M

an
n 

19
83

R
us

si
a 

(B
la

ck
Se

a)
 

C
ra

ss
os

tr
ea

 g
ig

as
 

19
76

 
U

nl
ik

el
y 

FA
O

/F
IG

IS
 

Sa
m

oa
 

C
ra

ss
os

tr
ea

 g
ig

as
 

U
SA

 (
w

es
t)

 
19

80
 

C
he

w
 1

99
0,

FA
O

/F
IG

IS
 

Se
ne

ga
l 

C
ra

ss
os

tr
ea

 g
ig

as
 

<
20

01
 

FA
O

 2
00

2a
 

Se
rb

ia
 a

nd
M

on
te

ne
gr

o 
C

ra
ss

os
tr

ea
 g

ig
as

 
U

nl
ik

el
y 

Z
ib

ro
w

iu
s 

19
92

 

Se
yc

he
lle

s 
C

ra
ss

os
tr

ea
 g

ig
as

 
Ja

pa
n 

19
74

 
U

nl
ik

el
y 

FA
O

/F
IG

IS
 

Si
ng

ap
or

e 
C

ra
ss

os
tr

ea
 g

ig
as

 
20

03
 

U
nl

ik
el

y 
Y

es
 

Q
ue

k 
20

04
 

Sl
ov

en
ia

 
C

ra
ss

os
tr

ea
 g

ig
as

 
U

nl
ik

el
y 

Z
ib

ro
w

iu
s 

19
92

So
ut

h 
A

fr
ic

a 
C

ra
ss

os
tr

ea
 g

ig
as

 
U

SA
 (

w
es

t)
,

C
hi

le
, F

ra
nc

e,
U

K
 

19
50

 
20

01
 

Y
es

 
C

he
w

 1
99

0,
 R

ob
in

so
n

et
 a

l. 
20

05
,

FA
O

/F
IG

IS
 

O
st

re
a 

ed
ul

is
 

<
19

92
 

Y
es

 
FA

O
 2

00
2a

 

Sp
ai

n 
C

ra
ss

os
tr

ea
an

gu
la

ta
 

Y
es

 
L

ik
el

y 
A

nd
re

w
s 

19
80

 

C
ra

ss
os

tr
ea

 g
ig

as
 

Fr
an

ce
 

19
80

 
Y

es
 

FA
O

/F
IG

IS

(C
on

ti
nu

ed
 ) 

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

00
5.

36
:6

43
-6

89
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

20 Oct 2005 12:44 AR ANRV259-ES36-27.tex XMLPublishSM(2004/02/24) P1: OJO

by
 U

N
IV

E
R

SI
T

Y
 O

F 
W

A
SH

IN
G

T
O

N
 -

 H
E

A
L

T
H

 S
C

IE
N

C
E

S 
L

IB
R

A
R

IE
S 

on
 0

1/
05

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



658 RUESINK ET AL. 
T

A
B

L
E

 1
 

(C
on

ti
nu

ed
 ) 

In
tr

od
uc

ed
 t

o 
Sp

ec
ie

s 
In

tr
od

uc
ed

fr
om

 
D

at
e 

E
st

ab
lis

he
d

(y
es

/n
o,

 d
at

e
if

 k
no

w
n)

 
C

ur
re

nt
aq

ua
cu

lt
ur

e?
 

R
ef

er
en

ce
s 

Sw
ed

en
 

C
ra

ss
os

tr
ea

 g
ig

as
 

19
80

 
N

o 
U

nl
ik

el
y 

M
an

n 
19

83
 

Ta
hi

ti 
C

ra
ss

os
tr

ea
 g

ig
as

 
U

SA
 (

w
es

t)
 

19
72

–1
97

6 
N

o 
B

ou
rn

e 
19

79
Sa

cc
os

tr
ea

ec
hi

na
ta

 
N

ew
 C

al
ed

on
ia

 
19

78
 

M
an

n 
19

83
 

Ta
nz

an
ia

 
Sa

cc
os

tr
ea

cu
cu

ll
at

ad 
M

ac
do

na
ld

 e
t a

l. 
20

03
 

To
ng

a 
C

ra
ss

os
tr

ea
be

lc
he

ri
 

M
al

ay
si

a 
(S

ab
ah

) 
19

77
–1

97
8 

N
o 

N
o 

B
ou

rn
e 

19
79

, E
ld

re
dg

e
19

94
, F

A
O

/F
IG

IS
C

ra
ss

os
tr

ea
 g

ig
as

 
Ja

pa
n,

 A
us

tr
al

ia
(T

as
m

an
ia

) 
19

75
 

U
nl

ik
el

y 
B

ou
rn

e 
19

79
, E

ld
re

dg
e

19
94

, F
A

O
/F

IG
IS

C
ra

ss
os

tr
ea

ir
ed

al
ei

 
19

76
 

E
ld

re
dg

e 
19

94
,

FA
O

/F
IG

IS
 

C
ra

ss
os

tr
ea

vi
rg

in
ic

a 
U

SA
 (

w
es

t)
 

19
73

 
E

ld
re

dg
e 

19
94

,
FA

O
/F

IG
IS

 
O

st
re

a 
ed

ul
is

 
Ja

pa
n,

 U
SA

 
19

75
 

U
nl

ik
el

y 
E

ld
re

dg
e 

19
94

,
FA

O
/F

IG
IS

 
Sa

cc
os

tr
ea

co
m

m
er

ci
al

is
 

N
ew

 Z
ea

la
nd

,
U

SA
 (

w
es

t)
 

19
73

 
U

nl
ik

el
y 

E
ld

re
dg

e 
19

94
 

T
un

is
ia

 
C

ra
ss

os
tr

ea
 g

ig
as

 
Fr

an
ce

 
<

19
84

 
Y

es
 

G
al

il 
20

00
, F

A
O

 2
00

2a

T
ur

ke
y 

C
ra

ss
os

tr
ea

 g
ig

as
 

U
nl

ik
el

y 
Z

ib
ro

w
iu

s 
19

92
Sa

cc
os

tr
ea

co
m

m
er

ci
al

is
 

20
00

a 
G

al
il 

20
03

 

U
K

 
C

ra
ss

os
tr

ea
an

gu
la

ta
 

Po
rt

ug
al

 
N

o 
A

nd
re

w
s 

19
80

 

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

00
5.

36
:6

43
-6

89
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

20 Oct 2005 12:44 AR ANRV259-ES36-27.tex XMLPublishSM(2004/02/24) P1: OJO

by
 U

N
IV

E
R

SI
T

Y
 O

F 
W

A
SH

IN
G

T
O

N
 -

 H
E

A
L

T
H

 S
C

IE
N

C
E

S 
L

IB
R

A
R

IE
S 

on
 0

1/
05

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



INTRODUCTION OF NON-NATIVE OYSTERS 659 

C
ra

ss
os

tr
ea

 g
ig

as
 

C
an

ad
a 

(w
es

t)
,

U
SA

 (
w

es
t)

,
H

on
g 

K
on

g,
Is

ra
el

 

19
26

,
19

65
–1

97
9 

D
is

-
ag

re
em

en
t 

Y
es

 W
al

ne
 &

 H
el

m
 1

97
9,

M
an

n 
19

83
, C

he
w

19
90

, D
ri

nk
w

aa
rd

19
99

, F
A

O
/F

IG
IS

C
ra

ss
os

tr
ea

rh
iz

op
ho

ra
e 

B
ra

zi
l 

19
80

 
N

o 
N

o 
U

tti
ng

 &
 S

pe
nc

er
19

92
, M

an
n 

19
83

,
FA

O
/F

IG
IS

 
C

ra
ss

os
tr

ea
vi

rg
in

ic
a 

C
an

ad
a 

(e
as

t)
,

U
SA

 (
ea

st
) 

18
70

–1
93

9,
19

84
 

U
nl

ik
el

y 
U

tti
ng

 &
 S

pe
nc

er
 1

99
2,

C
ar

lto
n 

&
 M

an
n

19
96

, F
A

O
/F

IG
IS

Sa
cc

os
tr

ea
cu

cu
ll

at
a 

Is
ra

el
 

19
79

 
N

o 
N

o 
M

an
n 

19
83

 

Ti
os

tr
ea

 c
hi

le
ns

is
 

C
hi

le
, N

ew
Z

ea
la

nd
 

19
62

–1
96

3 
Y

es
 

U
tti

ng
 &

 S
pe

nc
er

 1
99

2,
R

ic
ha

rd
so

n 
et

 a
l.

19
93

, F
A

O
/F

IG
IS

O
st

re
a 

ed
ul

is
c 

N
or

w
ay

 
19

72
 

A
sk

ew
 1

97
2 

U
kr

ai
ne

 (
B

la
ck

Se
a)

 
C

ra
ss

os
tr

ea
 g

ig
as

 
19

76
 

U
nl

ik
el

y 
FA

O
/F

IG
IS

 

U
.S

. V
ir

gi
n

Is
la

nd
s 

C
ra

ss
os

tr
ea

 g
ig

as
 

U
SA

 (
w

es
t)

 
19

80
 

C
he

w
 1

99
0,

FA
O

/F
IG

IS
 

U
SA

 (
A

la
sk

a)
 

C
ra

ss
os

tr
ea

 g
ig

as
 

U
SA

 (
w

es
t)

 
19

80
 

U
nl

ik
el

y 
Y

es
 

C
he

w
 1

99
0,

FA
O

/F
IG

IS
 

U
SA

 (
ea

st
) 

C
ra

ss
os

tr
ea

ar
ia

ke
ns

is
 

C
hi

na
, U

SA
(w

es
t)

 
<

20
01

 
U

nl
ik

el
y 

N
R

C
 2

00
4 

C
ra

ss
os

tr
ea

 g
ig

as
 

U
SA

 (
w

es
t)

 
19

30
–1

99
0 

U
nl

ik
el

y 
N

o 
H

ic
ke

y 
19

79
, C

he
w

19
90

, N
R

C
 2

00
4

(C
on

ti
nu

ed
 ) 

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

00
5.

36
:6

43
-6

89
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

20 Oct 2005 12:44 AR ANRV259-ES36-27.tex XMLPublishSM(2004/02/24) P1: OJO

by
 U

N
IV

E
R

SI
T

Y
 O

F 
W

A
SH

IN
G

T
O

N
 -

 H
E

A
L

T
H

 S
C

IE
N

C
E

S 
L

IB
R

A
R

IE
S 

on
 0

1/
05

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



660 RUESINK ET AL. 

T
A

B
L

E
 1

 
(C

on
ti

nu
ed

 ) 

In
tr

od
uc

ed
 t

o 
Sp

ec
ie

s 
In

tr
od

uc
ed

fr
om

 
D

at
e 

E
st

ab
lis

he
d

(y
es

/n
o,

 d
at

e
if

 k
no

w
n)

 
C

ur
re

nt
aq

ua
cu

lt
ur

e?
 

R
ef

er
en

ce
s 

O
st

re
a 

ed
ul

is
 

N
et

he
rl

an
ds

 
19

49
–1

96
1 

L
ik

el
y 

Y
es

 
M

an
n 

19
83

, C
he

w
19

90
, H

id
u 

&
 L

av
oi

e
19

91
, F

A
O

/F
IG

IS
C

ra
ss

os
tr

ea
vi

rg
in

ic
ac 

U
SA

 (
ea

st
),

U
SA

 (
G

ul
f)

 
18

08
–1

96
0 

C
ar

lto
n 

&
 M

an
n 

19
96

 

U
SA

 (
G

ul
f)

 
C

ra
ss

os
tr

ea
co

rt
ez

en
si

s 
19

80
 

N
o 

M
an

n 
19

83
 

C
ra

ss
os

tr
ea

 g
ig

as
 

19
30

 
N

o 
N

o 
N

R
C

 2
00

4 
C

ra
ss

os
tr

ea
rh

iz
op

ho
ra

e 
19

80
 

N
o 

M
an

n 
19

83
 

U
SA

 (
H

aw
ai

i)
 

C
ra

ss
os

tr
ea

 g
ig

as
 

Ja
pa

n,
 U

SA
(w

es
t)

 
19

26
, 1

98
0 

19
60

? 
(P

ea
rl

H
ar

bo
r)

 
Y

es
 

C
he

w
 1

99
0,

 E
ld

re
dg

e
19

94
, F

A
O

/F
IG

IS
C

ra
ss

os
tr

ea
si

ka
m

ea
 

Ja
pa

n 
19

47
 

N
o 

W
oe

lk
e 

19
55

 

C
ra

ss
os

tr
ea

vi
rg

in
ic

a 
18

66
–1

94
9 

18
95

 
L

ik
el

y 
C

ar
lto

n 
&

 M
an

n 
19

96
 

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

00
5.

36
:6

43
-6

89
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

20 Oct 2005 12:44 AR ANRV259-ES36-27.tex XMLPublishSM(2004/02/24) P1: OJO

by
 U

N
IV

E
R

SI
T

Y
 O

F 
W

A
SH

IN
G

T
O

N
 -

 H
E

A
L

T
H

 S
C

IE
N

C
E

S 
L

IB
R

A
R

IE
S 

on
 0

1/
05

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



INTRODUCTION OF NON-NATIVE OYSTERS 661 

U
SA

 (
w

es
t)

 
C

ra
ss

os
tr

ea
ar

ia
ke

ns
is

 
Ja

pa
n 

19
77

b 
N

o 
L

ik
el

y 
Pe

rd
ue

 &
 E

ri
ck

so
n

19
84

, L
an

gd
on

 &
R

ob
in

so
n 

19
96

C
ra

ss
os

tr
ea

 g
ig

as
 

Ja
pa

n,
 K

or
ea

 
19

02
 

L
ik

el
y 

Y
es

 
K

in
ca

id
 1

96
8,

A
nd

re
w

s 
19

80
, C

he
w

19
90

, F
A

O
/F

IG
IS

C
ra

ss
os

tr
ea

si
ka

m
ea

 
Ja

pa
n 

19
47

 
N

o 
Y

es
 

W
oe

lk
e 

19
55

 

C
ra

ss
os

tr
ea

vi
rg

in
ic

a 
U

SA
 (

ea
st

) 
18

67
–1

93
5 

U
nl

ik
el

y 
Y

es
 

A
nd

re
w

s 
19

80
, C

he
w

19
90

, C
ar

lto
n 

&
M

an
n 

19
96

 
O

st
re

a 
ed

ul
is

 
U

SA
 (

ea
st

) 
Y

es
 

C
he

w
 1

99
0 

V
an

ua
tu

 
C

ra
ss

os
tr

ea
 g

ig
as

 
U

SA
 (

w
es

t)
 

19
72

 
U

nl
ik

el
y 

E
ld

re
dg

e 
19

94
,

FA
O

/F
IG

IS
 

Y
ug

os
la

vi
a 

C
ra

ss
os

tr
ea

 g
ig

as
 

U
nl

ik
el

y 
Z

ib
ro

w
iu

s 
19

92
 

a R
an

ge
 e

xp
an

si
on

.
b 
H

itc
hh

ik
er

 w
ith

 o
th

er
 o

ys
te

rs
.

c T
ra

ns
pl

an
ta

tio
n 

in
 n

at
iv

e 
ra

ng
e.

d 
Po

ss
ib

le
 tr

an
sp

la
nt

at
io

n 
w

ith
in

 n
at

iv
e 

ra
ng

e,
 b

ut
 ta

xo
no

m
y 

un
ce

rt
ai

n.
 

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

00
5.

36
:6

43
-6

89
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

20 Oct 2005 12:44 AR ANRV259-ES36-27.tex XMLPublishSM(2004/02/24) P1: OJO

by
 U

N
IV

E
R

SI
T

Y
 O

F 
W

A
SH

IN
G

T
O

N
 -

 H
E

A
L

T
H

 S
C

IE
N

C
E

S 
L

IB
R

A
R

IE
S 

on
 0

1/
05

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



662 RUESINK ET AL. 

Oyster Production 

One major consequence of introductions has been a shift in production from native 
to non-native oysters, largely in places where oysters have successfully established 
(e.g., C. gigas in the western United States, Europe, Australia, New Zealand, and 
South Africa) but also in places where they have not established and artificial 
reproduction is practiced (C. gigas in Namibia and C. sikamea in the western United 
States). The FAO compiles fishery statistics by species and country worldwide 
(FAO 2002). We used their recent data (1993–2002) to assess the contributions 
of non-native and native species to global oyster production (Table 2). These 
values differ substantially by region. In Asia, most production is based on native 
Crassostrea species [China: C. plicatula Saccostrea cucullata (Nie 1991); Japan 
and Korea: C. gigas (Kusuki 1991)]; no records of cultured non-native species have 
emerged. C. gigas also contributes substantially to oyster production outside of 
Asia where it is not native. C. gigas constitutes 95% of European oyster production 
and 37% of African oyster production. On the western coast of North America, 
99.8% of oyster production comes from non-native species, primarily C. gigas. 
However, only 20% of total U.S. production derives from introduced oysters, as 
much of the production still relies on the native C. virginica in Atlantic and Gulf 
Coast states. In the 26 countries where the FAO reports production from introduced 
oysters, 48% of production comes from introduced species (Table 2). 

In most cases, historical yields of oysters are poorly known, so we cannot com-
pare former productivity, on the basis of native species, with current productivity 
in which non-native species have replaced native species. However, isolated records 
do exist. In Willapa Bay, Washington, C. gigas yields about four times more 
shucked meat weight annually than at the peak of native oyster production in the 
late 1800s (Ruesink et al. 2005). The shift does not reflect an increase in area 
occupied by oysters (Townsend 1896, Hedgpeth & Obrebski 1981). In France, 
production of more recently introduced C. gigas outpaces the peak in C. angulata 
production by 30% (Goulletquer & Heral 1991, Heral & Deslous-Paoli 1991). 
Peak yields of the native O. edulis occurred more than 150 years ago, and data are 
not available for comparison. In New Zealand, aquaculture of the native S. com-
mercialis yielded 500 metric tons a year until the 1970s (Dinamani 1991a), and its 
replacement by C. gigas, which reportedly grows twice as fast locally (Dinamani 
1991a,b, Honkoop et al. 2003), has yielded 5,000 metric tons a year over the past 
decade (FAO 2002). Intrinsic differences between native and introduced oysters 
are difficult to distinguish from advances in hatchery techniques, more intensive 
aquaculture, and increased consumer demand. For comparison, China’s oyster 
production, based exclusively on native species, is reported to have increased by 
a factor of 180 over the past 20 years (FAO 2002). 

Habitat Impacts 

Oysters have potentially high impact when introduced into ecosystems because 
of their influence on habitat quantity and quality (Crooks 2002). Their role as 
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INTRODUCTION OF NON-NATIVE OYSTERS 663 

TABLE 2 Production of native and non-native species of oysters by country 

Country and region Introduced∗ Native∗ Uncertain∗ 
Introduced/ 
Total 

Africa 
Algeria 5 1.00 
Kenya 108 0.00 
Mauritius 68 0.00 
Morocco 1741 18 0.99 
Namibia 310 1.00 
Senegal 13 1381 0.01 
South Africa 4513 1 1.00 
Tunisia 13 9642 0.00 
Regional total 6595 11218 0.37 

Americas 
Argentina 82 1.00 
Brazil 15313 1.00 
Canada 55038 55553 0.50 
Chile 33822 3355 0.91 
Columbia 28 0.00 
Cuba 16735 0.00 
Dominican Republic 275 0.00 
Ecuador 46 1.00 
Mexico 16243 374194 0.04 
Peru 90 1.00 
USA 408831 1679965 0.20 
Venezuela 24559 0.00 
Regional total 514152 2154664 15313 0.19 

Asia 
Australia 43478.5 53595 319 0.45 
China 26067607 0.00 
China, Hong Kong 4805 0.00 
India 82 0.00 
Indonesia 14717 0.00 
Japan 2206168 0.00 
Korea Republic 2049443 0.00 
Malaysia 1335 0.00 
New Caledonia 554 1.00 
New Zealand 54638.5 11044 0.83 
Philippines 143244 0.00 
Taiwan 224856 0.00 
Thailand 196024 0.00 
Regional total 98671 30971585 1654 0.00 

Europe 
Bosnia and 

Herzogovina 
15 0.00 

(Continued ) 
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664 RUESINK ET AL. 

TABLE 2 (Continued ) 

Country and Region Introduced∗ Native∗ Uncertain∗ 
Introduced/ 
Total 

Croatia 539 0.00 
Channel Islands 2217 4 1.00 
Denmark 698 0.00 
France 1353313 20793.5 0.98 
Germany 806 1.00 
Greece 5842 0.00 
Ireland 41306 7947 0.84 
Italy 302 1.00 
Netherlands 21486 1154 0.95 
Norway 10.5 54 0.16 
Portugal 6390 10.5 457 0.93 
Russian Federation 38 0.00 
Serbia andMontenegro 6 0.00 
Slovenia 9 0.00 
Spain 8312.5 30057 0.22 
Sweden 27 0.00 
United Kingdom 9425.5 7098 0.57 
Regional total 1443568.5 74292 457 0.95 

World total 2062986.5 33211759 17424 0.06 
World total without 

China, Hong Kong, 
Japan, Korea and 
Taiwan 

2062986.5 2658880 17424 0.44 

Countries (n 26) 
that report introduced 
oysters 

2062986.5 2255866 776 0.48 

∗Numbers reported are shucked weights in metric tons/10 yr. 

ecosystem engineers is particularly pronounced in soft-sediment environments, 
where hard substrate is rare except for shell deposits of oysters. Introduced ecosys-
tem engineers are expected to improve conditions for some species and exclude 
others. Ideally, experiments would be conducted in which oyster reefs are created 
or removed, and associated communities are compared with those in unmanip-
ulated areas. Lenihan et al. (2001) used the native oyster C. virginica to com-
pare fish and epibenthic invertebrate (blue crab, mud crabs, grass shrimp, and 
amphipods) assemblages on experimentally constructed reefs with assemblages 
on soft-sediment bottom in Pamlico Sound, North Carolina. Fish abundance was 
325% greater, and epibenthic invertebrate abundance was 213% greater per trap 
placed on reefs than on the unstructured sand/mud bottom, a finding consistent 
with observational studies (Kennedy 1996). However, few such manipulative ex-
periments exist for introduced oysters (but see Escapa et al. 2004). Instead, most 
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INTRODUCTION OF NON-NATIVE OYSTERS 665 

studies involve mensurative experiments that compare assemblages on existing 
habitat types. 

Two soft-sediment systems have been examined in detail by use of this men-
surative experimental approach. In Willapa Bay, infaunal, epifaunal, and nekton 
communities have been compared across habitats, including cultured oyster (in-
troduced C. gigas) habitats and unstructured tideflat. Consistently, oysters harbor 
a higher diversity of epifauna (Hosack 2003) and higher densities of mussels, 
scaleworms, and tube-building amphipods (Dumbauld et al. 2001). Infaunal as-
semblages were unaffected (Dumbauld et al. 2001), as were small fish and year-old 
Dungeness crab (Cancer magister) (Hosack 2003). Nekton communities differed 
among regions of the bay, however, which suggests that small fish and crabs species 
may respond to habitat on scales larger than individual parcels of several hectares 
(Hosack 2003). Nevertheless, shells of C. gigas placed at high density in the in-
tertidal zone provided excellent habitat for newly recruited crab (C. magister) in  
nearby Grays Harbor, Washington: crabs recruited preferentially to shell, and sur-
vival of tethered crabs was 70% higher on shell than over open bottom (Fernandez 
et al. 1993). 

In Arcachon Bay, France, both seagrass (Zostera noltii) and oyster (C. gigas) 
culture contained higher densities of meiofauna (<0.5 mm) than did nearby sand-
flats; macrofauna reached highest densities in seagrass (Castel et al. 1989). The 
authors speculated that biodeposits of oysters provided a food resource for meio-
fauna, whereas macrofauna associated with oysters were negatively affected by 
hypoxic conditions. Alternatively, macrofauna could be depressed by effective 
predators foraging on oysters, in which case oyster habitats might support higher 
trophic levels (Lenihan et al. 2001, Leguerrier et al. 2004). 

Clearly, the provision of hard surface in soft sediments influences many as-
sociated species, but few data exist on the rate of conversion of native habitats, 
such as unvegetated tideflat or eelgrass, into introduced oyster reefs. In many 
cases, these transitions are mediated by aquaculture practices (Simenstad & Fresh 
1995). However, some evidence exists that oyster reefs can reduce eelgrass cover 
directly. In western Canada, eelgrass (Zostera marina) was relatively rare downs-
lope from dense C. gigas, and transplanted shoots survived poorly relative to trans-
plants within natural eelgrass beds located away from reefs (J. Kelly, unpublished 
data). 

We found little published evidence of major impacts of introduced oysters on 
communities located on hard substrate. Natural recruitment of introduced C. gigas 
in British Columbia, Canada, occurs primarily in the rocky intertidal zone (Bourne 
1979; J. Ruesink, unpublished data), which entails much less modification of 
substrate than in cases of reefs forming on soft sediment. In the Strait of Georgia, 
C. gigas are dominant in high (1.3 to 2.4 m) intertidal areas. This area is partially 
in the barnacle zone, and oysters may actually provide greater surface area for 
barnacles (Bourne 1979, p. 22). Introduced oysters inhabit a niche that was largely 
vacant and not dominated by any organism at the time of introduction. A more 
quantitative analysis has recently been published for Argentina, where C. gigas 
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666 RUESINK ET AL. 

was introduced in 1982 and now occurs exclusively on rock outcrops (Escapa et al. 
2004). Among eight epifaunal species, three occurred at higher densities inside 
oyster beds, and three occurred at higher densities outside. Shorebirds also spent a 
disproportionate amount of time associated with oysters, where foraging rate was 
often higher (Escapa et al. 2004). 

Impacts on Species Interactions 

Introduced oysters provide a new resource for native predators. Rocky intertidal 
predators such as seastars and crabs reduced monthly survival rates of C. gi-
gas, introduced in western Canada, by 25% relative to caged oysters (J. Ruesink, 
unpublished data). Indeed, predator control is widely practiced to achieve higher 
aquaculture yields (see Menzel 1991). Some introduced oysters appear to be an eas-
ier resource than native species to handle or consume (Yamada 1993, Richardson 
et al. 1993), whereas other introduced oysters tend to be avoided (Richardson et al. 
1993). In theory, then, introduced oysters may enhance the resource base for higher 
trophic levels of bivalve predators. Species interactions may also be modified by 
the shell habitat provided by oysters. In Grays Harbor, higher densities of crabs 
(C. magister) in oyster-shell habitats led to enhanced predation on and lower densi-
ties of native clams in these habitats, even though clam recruitment was not directly 
affected by shell (Iribarne et al. 1995). Grabowski (2004) demonstrated that the 
structural complexity of native-oyster reef habitat strongly controlled the strength 
of predation by oyster toadfish (Opsanus tau) on  resident mud-crab populations 
(P. herbstii). 

Competition between native and introduced oysters is expected to be most 
intense if they share similar habitat. Temperature, salinity, and desiccation are 
three primary physical factors that determine each species’ fundamental niche. In 
many cases, native and introduced oysters differ in their environmental tolerances, 
which suggests the potential for few competitive interactions. On the western 
coast of North America, the native O. conchaphila tends to occur at lower depths 
with less temperature stress than does the introduced C. gigas (Stafford 1913). 
In contrast, in Australia, the native Sydney rock oyster S. commercialis actually 
survives longer out of water than does C. gigas (Pollard & Hutchings 1990). This 
difference in desiccation tolerance has been exploited to control C. gigas in places 
where it has been classified as noxious (e.g., in New South Wales, Australia). When 
both species settle on common substrate, C. gigas can be killed by holding the 
substrate out of water for sufficiently long time. Several examples exist in which 
native and introduced species do not overlap in their spatial distributions (Walne 
& Helm 1979, Andrews 1980). 

Despite different habitats of many native and introduced oysters, they often 
overlap in some part of their range. When overlap occurs, introduced oysters 
consistently outgrow natives, presumably because higher-yielding species were 
specifically introduced for that characteristic. C. gigas grows five times faster than 
O. conchaphila in western North America (Baker 1995), possibly because of its 
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INTRODUCTION OF NON-NATIVE OYSTERS 667 

higher per-area filtration rate (Galtsoff 1932). In the United Kingdom, T. chilensis 
(introduced from New Zealand) outgrows C. gigas (also introduced), which out-
grows the native O. edulis, at  least under some conditions (Askew 1972, Richardson 
et al. 1993). Ironically, in Chile, where T. chilensis is native, the relative growth 
rates are reversed; introduced C. gigas reaches market size “much more rapidly” 
than the 4 to 5 years required for the native species (Chanley & Chanley 1991). 
On the East Coast of the United States, C. gigas (introduced but not established) 
outgrows O. edulis, which outgrows the native C. virginica (Dean 1979). Indeed, 
C. gigas has been selected for worldwide introduction in part because of its rapid 
growth rate, which yields high biomass for growers. 

Direct tests of competition between native and non-native oysters require com-
parisons of growth and survival in monocultures and mixed cultures, but few ex-
amples exist in the literature. In North Carolina, introduced Crassostrea ariakensis 
outgrows native C. virginica and introduced C. gigas, probably because C. ariak-
ensis is better at assimilating food and has lower energy requirements to produce 
a relatively thin shell (Grabowski et al. 2004). Anecdotally, the arrival of C. gigas 
in New Zealand rapidly reduced native S. commercialis. On  spat collectors, the 
ratio of S. commercialis to C. gigas in 1972 strongly favored the native (1000:1); 
they were evenly represented in 1977, and by 1978, the non-native outrecruited 
the native 4:1 (Dinamani 1991c). Whether this recruitment differential emerged 
from higher fecundity of C. gigas, better larval survival, or simply the introduced 
species’ higher individual growth rate (Dinamani 1991c) is not clear. 

A historical example in which an introduced species likely outcompeted a native 
oyster occurred in France after the introduction of Crassostrea angulata around 
1868. Afterwards, native O. edulis began a steady decline until, by 1870, it was 
completely gone from certain sections of the French coast and fully replaced by 
C. angulata. French government figures on oyster production document this in-
verse relationship of the species’ abundances. By 1925, 300 million C. angulata 
were produced; the figure climbed to 914 million by 1929. In sharp contrast, 
only 2.4 million O. edulis were harvested in 1925 and declined to 668,000 by 
1929 (Galtsoff 1932). Mechanistic studies of these oysters’ filtration rates by Vial-
lanes (1892) demonstrated that C. angulata filtered water 5.5 times faster than did 
O. edulis and, thus, would be a superior competitor for seston resources. Further-
more, Danton (1914) observed that because C. angulata grows more quickly, it 
is superior at pre-empting settlement space. The possibility certainly exists that a 
disease helped mediate the rapid replacement by C. angulata because oyster dis-
eases were not well known at the time. Nonetheless, the competitive advantages 
of C. angulata were pronounced, well documented, and certainly played some if 
not the central role in its dominance (Ranson 1926). 

Competition between oyster species also occurs indirectly through habitat mod-
ification. The introduced C. gigas in Willapa Bay inhabits both feral oyster reefs 
and planted aquaculture beds, mostly in the intertidal zone (Kincaid 1951, Feldman 
et al. 2000). Neither of these habitat types likely provides a functional replacement 
for the largely subtidal accumulations of shell where the native O. conchaphila 
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previously occurred (Townsend 1896). The native oyster has remained rare, al-
though many observations over the past century suggest it is not recruitment limited 
(Kincaid 1968). Recent evidence suggests that native-oyster larvae disproportion-
ately settle in areas with large accumulations of shell. Because intertidal C. gigas 
comprises most shell habitat in the bay, the native oysters only have the option of 
recruiting to zones where immersion times are too short for survival (A. Trimble, 
unpublished data). Thus, the introduced oyster has developed into a recruitment 
sink for natives, particularly in the absence of remnant subtidal native-oyster 
reefs. 

Competition may also occur with species other than oysters. C. gigas introduced 
to Argentina recruits on native mussels that normally dominate intertidal rocky 
shores (Orensanz et al. 2002), and it similarly recruits to mussel beds that occupy 
tideflats of the Wadden Sea (Reise 1998). Oyster densities in these locations appear 
to be too low to achieve population-level impacts on mussels, but oysters can kill 
individual mussels (Reise 1998). In other locations, mussels are probably less 
vulnerable to novel oysters. On wave-exposed western North American shores, 
mussels are known to be dominant competitors (Paine 1966), and they reduce 
growth rates of C. gigas by more than 30% (J. Ruesink, unpublished data). 

Many prior evaluations of oyster introductions suggest that introduced species 
had little impact on native populations in part because the native species was already 
at such low densities (Goulletquer & Heral 1991, NRC 2004). This suggestion 
begs the question of whether the new species has any impact on the ability of the 
native species to recover—certainly, competition can occur even when one species 
is rare. Native oysters have failed to recover in places where new species have 
been introduced (western North America and Europe), but they have also failed 
to recover where non-native species are not abundant (eastern North America). 
These comparisons are confounded by disease—the introduction of an oyster may 
not in itself prevent recovery, but rather the introduction of a disease carried by 
that oyster (reviewed by NRC 2004). The role of disease is explored more fully 
below (see Impacts of Hitchhiking Species). 

Ecosystem Impacts 

Oysters in high-density aquaculture experience reduced growth rates as their pro-
duction increases and populations presumably approach carrying capacity (Kincaid 
1968, Heral & Deslous-Paoli 1991, Kusuki 1991, Crawford 2003, Robinson et al. 
2005). Such density dependence suggests that oysters can reach sufficiently high 
density, particularly via aquaculture, to reduce food availability to conspecifics 
as well as other species dependent on suspended particulate food. Filtration by 
large populations of introduced species (or restored native populations), there-
fore, has the potential to influence trophic dynamics and water quality (Newell 
1988, Ulanowicz & Tuttle 1992, Coen & Luckenbach 2000, NRC 2004). For ex-
ample, many investigators have hypothesized that overproduction of phytoplank-
ton in Chesapeake Bay, generated by anthropogenic nutrient loading, could be 
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INTRODUCTION OF NON-NATIVE OYSTERS 669 

reduced by increase of biofiltration rates through restoration of native populations 
of C. virginica or the introduction of C. gigas and C. ariakensis (Tuttle et al. 1987, 
Newell 1988, NRC 2004). Recent experimental results indicate that transplants 
of native oysters can significantly increase water quality in small bodies of wa-
ter, such as tidal creeks (Nelson et al. 2004). Therefore, the probability is high 
that introductions of oysters that survive at high densities could improve water 
quality. 

Oyster introductions may also enhance estuarine-wide production of other eco-
nomically valuable species, such as finfish and crabs. Peterson et al. (2003) calcu-
lated that over a 20-year to 30-year period, a restored oyster reef could enhance the 
cumulative amount of fish and large decapod biomass by 38 to 50 kg per 10 m−2 

of bottom area, discounted for present-day value. This positive effect would occur 
only where the introduction involved a reef builder and local species of fishes 
responded positively to that habitat through enhanced recruitment anduse of the 
substrate as refuge and as foraging ground. 

Fecal pellets of suspension feeders on tidal flats tend to be organically rich rel-
ative to sediment and to provide sites for nutrient exchange, including nitrification 
and especially denitrification (Reise 1985). For introduced oysters, in particular, 
few data on biogeochemical impacts are available, and most come from aquacul-
ture and should be applied tentatively to impacts of naturalized populations. At 
high densities, C. gigas generates biodeposits, which leads to reduced particle size 
and increased organic content in sediment (Castel et al. 1989), impacts that are 
avoided at lower oyster densities or higher flow rates (Crawford et al. 2003). The 
ability of suspension feeders, particularly oysters, to couple pelagic production to 
the benthos is well accepted (Dame et al. 1984), and researchers also hypothesized 
that release of inorganic nutrients into the water column by oysters may accelerate 
phytoplankton productivity (Leguerrier et al. 2004). 

Impacts of Hitchhiking Species 

The oyster industry has been one of the largest vectors of introduced marine 
invaders, despite early recognition that movement of oysters could also transport 
pests of aquaculture (Carlton 1992a,b). Early screening of imported oysters was 
driven entirely by the desire to prevent incidental importation of oyster pests such 
as drilling snails (Urosalpinx cinerea and Ocinebrellus inornatus) (Galtsoff 1932, 
McMillin & Bonnot 1932). For example, entire contents of infected shipments 
were often sacrificed to prevent the importation of oyster pest species; however, 
nonpest exotic species were not considered (Bonnot 1935). Nevertheless, few of 
the hitchhiker species of concern were ultimately prevented from introduction 
(Garcia-Meunier et al. 2002, Martel et al. 2004). 

To explore the contribution of oyster culture to species invasions, we compiled 
data from the literature on the number of marine species introduced to nine regions 
of the world, where expert opinions had been expressed about the vectors of 
species introductions (Figure 2). A total of 78 established invasive marine algae, 

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

00
5.

36
:6

43
-6

89
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

20 Oct 2005 12:44 AR ANRV259-ES36-27.tex XMLPublishSM(2004/02/24) P1: OJO

by
 U

N
IV

E
R

SI
T

Y
 O

F 
W

A
SH

IN
G

T
O

N
 -

 H
E

A
L

T
H

 S
C

IE
N

C
E

S 
L

IB
R

A
R

IE
S 

on
 0

1/
05

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



670 RUESINK ET AL. 

Figure 2 The number (a) and percentage (b) of  known introduced species brought 
into different global regions exclusively through the culturing of oysters (black) or via 
oyster culture and some other vector such as shipping (gray). Established non-native 
oysters are included in these data. The regions are ordered by the number of non-
native oyster species cultured in that region, from least to most. (Cranfield et al. 1998, 
Goulletquer et al. 2002, Olenin et al. 1997, Orensanz et al. 2002, Pollard & Hutchings 
1990, Reise et al. 1999, Ruiz et al. 2000.) 

invertebrates, and protozoa were introduced to the nine regions solely through 
the culturing of non-native oysters. If we include species with multiple vectors of 
introduction (oyster imports and some other vector such as shipping), then 46% of 
the introduced species in northern Europe and 20% in Australia likely entered with 
oyster aquaculture. The contribution of oyster aquaculture to invasion in coastal 
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INTRODUCTION OF NON-NATIVE OYSTERS 671 

systems of the United States varies by region: 10% on the Gulf Coast, 20% on 
the East Coast, and 49% on the West Coast. Not unexpectedly, regions where a 
wider variety of oyster species have been cultured tend to have a greater number 
(Figure 2a) and percentage (Figure 2b) of  hitchhiking non-native species. 

Many of the species brought in with aquaculture present problems for the 
continued production of oysters in addition to potentially interacting with na-
tive species and altering the structure and function of surrounding communities 
and ecosystems (White et al. 1985, Wilson et al. 1988). Some invasives outcom-
pete and ultimately displace native species. Batillaria attramentaria, an  Asian 
snail introduced to the U.S. West Coast with C. gigas, outcompetes the mud snail 
Cerithidea californica, which has caused local extinction of the native snail in a 
number of estuaries (Byers 2000). Other hitchhikers alter the community struc-
ture in surrounding areas. In Great Britain, Crepidula fornicata, introduced with 
C. virginica, is  found in densities greater than 4,000 individuals per m2 and has pos-
itive effects on abundance, biomass, and species richness of the macrozoobenthos 
(de Montaudouin & Sauriau 1999). In Elkhorn Slough, a central California estuary, 
38 of 58 known marine invasives were likely introduced through oyster culture 
(Wasson et al. 2001). In addition to free-living hitchhikers, parasites of introduced 
oysters can infest other native species. For example, the shell-boring sabellid poly-
chaete, Terebrasabella heterouncinata, introduced with C. gigas in California, 
infested cultured red abalone, Haliotis rufescens, with great economic conse-
quences to growers before it was successfully eradicated (Kuris & Culver 1999). 
Additionally, some hitchhikers provide structural habitats that can host a variety 
of other species. Caulacanthus ustulatus, an  Asian turf-forming red alga also in-
troduced with C. gigas, forms monospecific stands in the intertidal of Sao Miguel 
Island, Azores, and Elkhorn Slough, California, that are inhabited by both na-
tive and introduced invertebrates (Neto 2000, K. Heiman, unpublished data). With 
nearly 50% of the species invading some geographic regions attributed, at least 
in part, to the culturing of oysters (Figure 2), hitchhiking species must factor into 
assessments of further movement of oysters around the globe. 

We have discussed oyster introductions to replace native species and, until 
now, paid little attention to the role of disease. However, disease is clearly a 
key factor in understanding both causes and consequences of oyster introductions. 
Introductions of oyster diseases via imported oysters have caused major ecological 
changes and economic loss in many estuaries worldwide. Aquaculture of native 
species may have been able to support high yields, but for high mortality caused 
by diseases in two high-profile examples: diseases that devastated O. edulis in 
Europe and separate diseases that affect C. virginica in North America. These 
diseases contributed to the decision to introduce C. gigas to Europe and to the 
intense discussion about whether to introduce new oysters to Chesapeake Bay and 
other eastern U.S. estuaries (Shatkin et al. 1997, MDSG 1991, NRC 2004). 

We compiled information on the locations and impacts of 18 oyster diseases. We 
began with nine taxa recognized by the World Organization for Animal Health and 
added others reported in published studies (Table 3). Several additional bacterial 
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674 RUESINK ET AL. 

and viral diseases not shown in Table 3 occur in larvae. In most cases, the diseases 
appeared in native oysters, but occasionally, introduced oysters contracted endemic 
diseases [e.g., C. ariakensis affected by Bonamia sp. in France and the eastern 
United States (Cochennec et al. 1998, Burreson et al. 2004)]. 

Disease theory suggests that pathogens and their hosts evolve toward coexis-
tence, and impacts of native pathogens on native hosts are necessarily low (or the 
pathogen eliminates its host and goes extinct) (Price 1980). When a new combina-
tion of host and pathogen arises, the host may have innate resistance through phys-
iological traits never encountered by the pathogen, or it may be highly susceptible 
to pathogen attack because selection for resistance has never occurred. Oysters ap-
pear to show a pattern similar to many marine species, namely, increased incidence 
of disease outbreaks and some entirely new (emerging) diseases (Harvell et al. 
1999). 

Our review of oyster diseases reveals the distressing pattern that oyster intro-
ductions or transplants of native species have been a major cause of emerging 
disease (Table 3). Among the 18 examples, two were definitely associated with in-
troduced oysters (Bonamia ostreae and Haplosporidium nelsoni), and another five 
may have been. Three additional disease agents (Marteilia refringens, Marteilia 
sydneyi, and Perkinsus marinus) were moved via native-oyster transplants, and the 
pathogens infected naı̈ve subpopulations. B. ostreae, a  haplosporidian protist that 
kills three- to four-year-old O. edulis, appears to have infected this oyster species 
when the oyster was introduced to the United States and subsequently infected 
native-oyster populations when O. edulis was transplanted back to Europe (Chew 
1990, Wood & Fraser 1996). 

Diseases caused by two parasites, H. nelsoni (MSX) and P. marinus (dermo), 
are considered major factors in the decline of native C. virginica in the eastern 
United States. Molecular evidence indicated an Asian origin for H. nelsoni, which 
caused high mortality in C. virginica in the 1990s [although it was probably intro-
duced with transfers of C. gigas much earlier (Burreson et al. 2000)]. In contrast, 
P. marinus probably originated in C. virginica along the southwest and Gulf Coast 
of the United States, but transplants of oysters within the native range spread it 
to locations where environmental conditions allowed the protist to become much 
more virulent (Table 1) (Reece et al. 2001). Substantial uncertainty remains in 
most cases about the origin of disease agents in oysters (Table 3). 

CONSERVATION AND RESTORATION 

Because oysters are often strong interactors in their native ecosystems, they pose 
several challenges for conservation. First, they require protection as key species 
that influence the structure and function of ecosystems. Yet, they are also directly 
exploited, which partly explains the genuine need for restoration in some places. 
In the past, oyster productivity has been restored through aquaculture and the in-
troduction of novel species, and these activities can alter the species composition 
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INTRODUCTION OF NON-NATIVE OYSTERS 675 

and ecological processes of coastal ecosystems. Decision makers are, thus, faced 
with the task of evaluating the costs and benefits of a potential introduction. The 
NRC (2004) reports an in-depth example of the difficulty of determining the con-
sequences of different introduction decisions, ecologically, economically, and so-
cially, in a book that evaluates the introduction of C. ariakensis as a means to 
recover oyster production in Chesapeake Bay. The approach hinges on ecological 
risk assessment. 

Ecological Risk Assessment for Oyster Introductions 

Ecological theory suggests that invasion success is a function of species traits, the 
recipient environment, the match between the species and the new environment, 
and effort applied to the introduction (number and size of introductions, often 
termed propagule pressure). Testing this theory requires data on both successful 
and failed introductions. Relevant data come from biocontrol releases (Beirne 
1975), horticultural plants (Rejmanek & Richardson 1996, Reichard & Hamilton 
1997), and imports of birds, mammals, and fishes (Veltman et al. 1996, Blackburn 
& Duncan 2001, Forsyth et al. 2004, Ruesink 2005). However, answers that emerge 
from these analyses tend to be idiosyncratic; different factors explain invasion in 
different taxa and at different scales. Factors also often differ in their predictive 
value for establishment and impact (Kolar & Lodge 2001). 

Emerging ecological risk assessments for introductions embody ecological 
principles and include reproductive rates, species interactions, and propagule pres-
sure, among others, in their guidelines (Ruesink et al. 1995). One widely accepted 
protocol for assessment of the risk of marine introductions was developed through 
the International Council for the Exploration of the Sea (ICES 2003). This protocol 
emphasizes four points: 

1. Probability of colonization and establishment in the area of introduction, 
which depends on the match between the environment and the species’ needs 
for food, reproduction, and habitat. This section also requires information 
on resistance to invasion from biotic or abiotic factors in the environment. 

2. Probability of spread from the point of introduction, which includes the 
species’ ability to disperse and the extent of suitable environmental 
conditions. 

3. Magnitude of impact on native (especially natural) ecosystems, which in-
cludes trophic interactions, habitat transformation, and interactions with na-
tive species of concern (threatened or declining). 

4. Probability of transport of a harmful pathogen or parasite. This final risk 
can be mitigated by a variety of methods to inspect and quarantine incoming 
organisms and release of only their progeny. 

The ICES code recognizes two types of risks from introductions, namely, the 
possible negative impacts of the species itself and the undesirability of bringing in 
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676 RUESINK ET AL. 

more hitchhiking species. Methods exist to reduce both of these risks: quarantine to 
reduce hitchhikers and triploidy to reduce establishment of oysters. The most feared 
organisms to import with oyster shipments are diseases (versus historical concern 
about predators) because of potential negative impacts on aquaculture and fisheries. 
Methods for disease reduction incidentally remove oyster predators and other hitch-
hikers as well (Barrett 1963, Mann 1983, Utting & Spencer 1992, Spencer 2002, 
NRC 2004). Non-native oysters are often planted as sterile triploids to prevent es-
cape from cultivation and establishment of self-sustaining populations. However, 
a small percentage of triploid oysters typically revert toward diploidy with age 
(Guo & Allen 1994). Even triploid oysters are not completely sterile, although 
their fecundity relative to diploids is small. Nevertheless, the average triploid fe-
male still produces thousands of fertilization-capable eggs every year. A second 
problem with introductions of triploids is that a small percentage of nontriploids 
may be inadvertently stocked because of a failure in the screening (Dew et al. 
2003). 

The ICES (2003) also recommends that the risk assessment generates a hypoth-
esis about the outcome of an introduction, which must be tested through postin-
troduction monitoring and experiments. We examine the history of introduction of 
C. gigas into western North America as a means of conducting an after-the-fact 
risk assessment. This species was introduced to Washington state in 1902, and 
regular imports began about 2 decades later and lasted until the 1970s. Imports 
of spat were initiated without any risk assessment and before another century of 
accumulated information on other oyster introductions. What would a risk assess-
ment indicate if the species were only now considered for introduction? Here, we 
briefly consider each of the four points in the ICES protocol: 

1. Because C. gigas has successfully established in warm bays on western 
continental shores (e.g., Europe and South Africa), it also would have a high 
probability of establishment in western North America. It has successfully 
colonized both rocky and soft-sediment habitats. However, resistance to 
invasion would be highly uncertain, because it has not been well studied 
anywhere. 

2. C. gigas has planktonic larvae that increase the likelihood of long-distance 
spread from the point of introduction. 

3. Impacts on natural ecosystems seem likely. Established populations in 
Germany occur at low density (Reise 1998), but high-density populations 
exist in New Zealand and South Africa (Robinson et al. 2005). Recent 
work in Argentina indicates community-level changes associated with high-
density introduced oysters (up to 250 per m2) (Escapa et al. 2004). However, 
the prediction is reasonable that C. gigas would occupy a higher tidal eleva-
tion than does the native species, O. conchaphila, and that, in places where 
it reached high density, it would transform habitat and increase epifaunal 
diversity. Thus, it would perform a novel ecosystem role in western North 
American estuaries. Evidence from other countries suggests that C. gigas 
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INTRODUCTION OF NON-NATIVE OYSTERS 677 

could be used to replace the economic production value of the native oyster, 
but it would not provide a functional replacement. 

4. The probability of transporting harmful pathogens or parasites could be 
reduced by release of second-generation individuals, rather than by direct 
importation of spat. If this risk assessment had been applied, fewer byprod-
uct introductions would have occurred (Figure 2). The high probability of 
establishment and uncertain impacts might have prompted greater efforts 
to protect and restore the native oyster, despite its slower growth and small 
size for aquaculture. 

The ICES protocol can also be used to evaluate the potential ecological conse-
quences of introducing C. gigas and C. ariakensis as replacement for diminished 
populations of native C. virginica in eastern North America: 

1. Both introduced species have a high probability of establishing in bays oc-
cupied by C. virginica. The introduced species could occupy much of the 
same areas because of their high tolerance of temperature and salinity vari-
ation and because they could colonize remnant reefs created by the native 
species. However, any oyster introduced into the system will sustain high 
levels of predation from blue crabs, which will severely limit their recovery 
or establishment (C.H. Peterson, personal communication). Preliminary re-
sults from a multi-million-dollar research project recently initiated by the 
NOAA-Chesapeake Bay Program indicate that C. ariakensis has a thin shell 
compared with C. virginica, so is  more vulnerable to crab predation (NRC 
2004). 

2. Both introduced species have long-lived larvae that would likely invade 
areas not intended for introduction. 

3. Both species would have significant impacts on ecosystem functions. 
C. ariakensis and C. gigas filter large volumes of water and, therefore, 
could replace the biofiltration capacity lost with C. virginica, as  well as ful-
fill some of the same functions regarding nutrient cycling. However, neither 
introduced species creates large subtidal reefs like C. virginica does. There-
fore, the non-natives would not provide this critical ecological function. 

4. Introduction of a harmful pathogen (e.g., Bonamia sp., via C. ariakensis) 
is possible. 

To summarize, this risk assessment indicates that introductions of the two 
species into estuaries of the eastern United States are likely to have substantial 
ecological impacts, that introductions would possibly fail because of deleterious 
biotic interactions and disease, and that effort at restoration of native species should 
be increased. Powers et al. (2005), who evaluated the restoration success of 103 
C. virginica reefs from 12 reef sanctuaries in North Carolina, found that restoration 
of native oysters has been largely successful from both an ecological and fisheries-
productivity standpoint, which highlights the possibility that reintroductions of 
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678 RUESINK ET AL. 

native oysters are a better option for ecosystem restoration than introduction of 
non-natives. 

RESEARCH PRIORITIES 

Ecological risk assessments associated with oyster introductions should place 
greater emphasis on ecosystem-level effects. Oyster introductions require that 
we advance our understanding of the functions and services provided by different 
marine species and assemblages. Major gaps in knowledge include how native 
and introduced species influence nutrient cycling, hydrodynamics, and sediment 
budgets; whether other native species use them as habitat and food; and the spatial 
and temporal extent of direct and indirect ecological effects within invaded and 
adjacent communities and ecosystems. Lack of information on community-level 
and ecosystem-level consequences of oyster introductions is surprising (but see 
Escapa et al. 2004), given that these introductions have occurred worldwide for 
more than a century. Studies that compare the ecosystem functions and services 
provided by native and introduced oysters are important research priorities, and 
they provide the framework for recent research projects, such as that supported 
by the NOAA-Chespaeake Bay Program to examine C. ariakensis and C. gigas 
introductions. Comparisons between introduced and native species must empha-
size naturalized populations, rather than oysters in aquaculture, although impacts 
of aquaculture also warrant examination. 

An important area of research is the possible context dependency of the impacts 
of oyster introductions. Introduction of the same species could have dramatically 
different consequences, depending on local environmental conditions, biological 
composition, and additional stressors at different sites. The broad geographic dis-
tribution of introductions of some oyster species, such as C. gigas, provides an 
opportunity for such spatial comparisons, both within (e.g., among estuaries along 
the western coast of the United States) and across regions (e.g., western versus 
eastern United States). 

Another critical research area is the role of introduced oysters as vectors, 
refuges, and resources for other introduced species and diseases (Figure 2, 
Table 3). Widespread and unanticipated introductions of nonindigenous species 
and novel diseases through oyster introductions raise major concerns about the 
ecological and economic consequences of these introductions and call for careful 
screening of larvae, juveniles, and adults before introduction. Even introduced reef 
habitat could facilitate establishment and persistence of invasives and pathogens. 
Facilitation of invaders by species that provide biogenic habitat or other resources 
that enhance the recruitment, growth, or survival of the invaders has been proposed 
as a mechanism for “invasion meltdowns” in natural ecosystems (Simberloff & von 
Holle 1999, Ricciardi 2001). Evidence of invasion facilitation by habitat-creating 
invasive species exists for estuarine species, such as the cordgrass Spartina al-
terniflora in northern California (Brusati & Grosholz 2005, Neira et al. 2005), the 
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INTRODUCTION OF NON-NATIVE OYSTERS 679 

reef-forming tubeworm Ficopomatus enigmaticus in central California (K. Heiman, 
unpublished data), and the bryozoan Wateresipora subtorquata in Queensland, 
Australia (Floerl et al. 2004). We found no similar evidence for oysters because 
such research has yet to be conducted. 

Considering the large uncertainty about the functional equivalence of different 
oyster species and possible impacts of oyster introductions on native populations 
and assemblages (focus of this review), introductions should be considered with 
caution until further, well-directed, and designed research is conducted. The high 
potential for unintended consequences of oyster introductions suggests that the de-
liberate introduction of oysters, although often effective in providing the economic 
benefits of increased aquaculture production, is unlikely to provide an effective 
tool for the restoration of ecological functions lost from native oyster decline and 
habitat degradation. 
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