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Summary 

1. It was once assumed that commercially important fish make up significant portions 
of seal diets. As a consequence, prior to the 1970s many seal populations were dramatically 
reduced by rampant slaughtering. Today, seals and other marine mammals are valued 
components of marine ecosystems and their numbers are carefully managed. To facilitate 
management, government statutes mandate the systematic monitoring of seal popula­
tions. Population estimates are based on counts of hauled-out seals obtained by aerial 
survey and radio and satellite telemetry; hence, considerable effort has been devoted to 
finding optimal times for such counts. We have developed a predictive mathematical model 
of seal haul-out to assist resource managers in the selection of optimal census times. 
2. Haul-out depends on a number of environmental variables. Some of these variables, 
such as wind speed, can be obtained only as historical data or short-range predictions. 
Others, such as tide height, are deterministic and can be obtained as long-range 
predictions. 
3. We used deterministic environmental variables to develop mathematical models that 
describe haul-out dynamics of harbour seals Phoca vitulina during the pupping season 
at a site in Washington, USA. A list of alternative hypotheses for environmental cues 
gave rise to a suite of competing models. We used information–theoretic model selection 
techniques to choose the best model. The selected model was a function of tide height 
and current direction, and explained 40% of the variability in hourly census data. 
4. An assumption that the system recovers rapidly after disturbance introduced two time 
scales. This allowed the differential equation model to be reduced to an algebraic equation. 
5. Synthesis and applications. This study demonstrates that resource managers can use 
a simple algebraic equation based on deterministic environmental variables to predict 
times at which to census maximal haul-out in harbour seals. At the Washington site, 
maximal daily haul-outs during pupping season are predicted to occur during receding 
tides, approximately midway between high and low tides. The largest maximal daily 
haul-outs during the pupping season are predicted to occur in the last week of July. The 
environmental factors correlated with haul-out are, however, site-specific; therefore the 
model developed for the Washington site will not necessarily hold for other haul-out 
areas. Managers should carry out the model selection procedure separately for each 
monitored haul-out site. The general methodology employed in this study can be used 
to make long-range predictions of diurnal movements for a variety of marine birds and 
mammals. 
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Introduction 

Harbour seals Phoca vitulina L. live within a broad 
latitudinal range along the North Atlantic and North 
Pacific coasts (Thompson et al. 1997; Carretta et al. 
2002). During the early and mid-20th century large 
numbers of these animals were slaughtered under the 
false assumption that commercially important fish such 
as salmon (Oncorhyncus sp.) formed a major component 
of harbour seal diets. Better understanding of the diets 
of harbour seals and increasing public concern over 
declining numbers of all marine mammals led to the 1970 
Conservation of Seals Act (CSA) in the UK and the 
1972 Marine Mammal Protection Act (MMPA) in the 
USA. These acts resulted in dramatic recoveries of seal 
populations (Boveng 1988; Moss 1992; Matthiopoulos 
et al. 2004). 

Not only do the CSA and MMPA provide statutory 
protection of seals, they also mandate the systematic 
monitoring of seal populations. Population estimates 
are used by government agencies to make decisions 
concerning seal conservation vis-à-vis human utilization 
of marine fisheries and other resources. Estimates are 
based on aerial as well as radio and satellite telemetered 
counts of hauled-out seals. Significant efforts are devoted 
to determining the most appropriate census times to 
achieve maximal counts under the assumption that 
these numbers can be used to calculate reasonable esti­
mates of population size (Pitcher & McAllister 1981; 
Stewart 1984; Thompson et al. 1989, 1997; Huber 1995; 
Thompson, Van Parijs & Kovacs 2001; Adkinson, Quinn 
& Small 2003; Jeffries et al. 2003; Matthiopoulos et al. 
2004). 

During the pupping season harbour seals divide 
their time between coastal waters, where they feed, and 
favourite haul-out sites, where they rest, interact with 
conspecifics, give birth and tend young (Watts 1992; 
Kroll 1993). They use a wide variety of habitats for 
hauling out, including sand and cobble beaches, rocky 
shelves, tidal sand and mud bars, human-made structures 
and drifting glacial ice (Stewart 1984). Hauling out 
lowers the cost of negotiating waves and currents and 
raises the temperature of peripheral tissues, promoting 
skin growth and maintenance. Timing of haul-out varies 
by sex, locality, individual variation and pelage dryness 
(Thompson et al. 1989, 1997; Watts 1992), as well as by 
a variety of environmental factors, including time of 
year, tide height, shoreline topography, time of day, wave 
intensity, disturbance, wind chill, wind speed, solar radi­
ation and air temperature (Schneider & Payne 1983; 
Stewart 1984; Thompson et al. 1989, 1997; Watts 1992). 

Studies of haul-out patterns typically utilize statistical 
approaches such as canonical correlation, linear 
regression and analysis of variance, which are designed 
to identify significantly correlated independent variables 
(Schneider & Payne 1983; Stewart 1984; Thompson 
et al. 1989; Moss 1992; Watts 1992). Statistical studies 
are useful for understanding patterns in historical data, 
but they provide limited predictive capability. In 

contrast, in addition to the description of past patterns, 
mathematical modelling allows the prediction of future 
patterns and the identification of probable driving forces 
for these patterns (Levin 1992; Hastings 1997). 

In previous work, Henson et al. (2004) used a differ­
ential equation model to predict, with surprising accuracy, 
diurnal habitat occupancy patterns in marine birds on 
Protection Island National Wildlife Refuge, Washington, 
USA. Deterministic environmental variables, including 
tide height, solar elevation and day of year, were used to 
create long-range predictions. In this study, we used 
similar methodology, but a different set of environmental 
variables, to model harbour seal haul-out on a beach at 
Protection Island, Washington, USA. 

Methods 

  

During the pupping season, hourly counts of harbour 
seals hauled out on the north beach of Violet Point, 
Protection Island (48°08′N, 122°55′W), were made on 
1 day per week from 05.00 to 20.00 Pacific Standard 
Time, during July and August of 1995 and 1997–99. All 
counts were made from a 33-m bluff overlooking Violet 
Point; counts made within 30 min after a major distur­
bance were discarded. A seal was considered to be hauled 
out if  its body was resting on the substrate, even when 
partially submerged. Hourly counts yielded samples at 
a temporal scale appropriate for detection of tidal and 
diurnal periodicities (Hunt & Schneider 1987). Tides in 
the adjacent Strait of  Juan de Fuca are semi-diurnal 
with strong diurnal inequalities in the lows. ‘Nodes’ of 
minimal tidal amplitude occur approximately every 
14 days (Fig. 1; arrows). Patterns in counts tended to recur 
during similar times within this biweekly tidal cycle. 

  

One principle of mathematical modelling is to identify 
a parsimonious set of simplifying assumptions that 
captures the main dynamics of a system. The model 
proposed in this study is formulated from five assumptions. 

Assumption 1 

The numbers of seals that haul out in the study area 
during daylight hours can be described with a two-
compartment model consisting of the haul-out site and 
a remote location (everywhere else). 

Assumption 2 

Seals move back and forth between these two com­
partments in direct response to deterministic environ­
mental variables. Specifically, seals leave the haul-out site 
for the remote location at a per capita rate proportional 
to a function E21(t) of deterministic environmental vari­
ables, and return to the haul-out site at a per capita rate 
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Fig. 1. Model prediction (lower solid curve), seal haul-out 
data (circles), tidal curve (upper solid curve) and current 
velocity (dashed curve). Each panel corresponds to 1 day. Tide 
height is graphed on a vertical scale of −1 to 3 m, and current 
velocity on a scale of −2 to 1·5 knots. A typical 14-day tidal 
period for Protection Island is shown at the bottom; tidal 
nodes are indicated with arrows. Data from days occurring 
during the same time in the tidal period are stacked vertically. 
The data in a given column show similar diurnal patterns. 
Days preceded by high, sustained winds are designated W (see 
the Discussion). The following are dates for days in each of the 
six columns, left to right, top to bottom: first column, 6 July 1995, 
7 July 1999, 20 July 1995, 21 July 1999, 3 August 1995, 4 August 
1999, 18 August 1999; second column, 2 July 1997, 16 July 1997, 
30 July 1997, 5 August 1998, 13 August 1997; third column, 8 
July 1998, 22 July 1998; fourth column, 13 July 1995, 14 July 
1999, 27 July 1995, 28 July 1999, 11 August 1999; fifth column, 
9 July 1997, 23 July 1997, 6 August 1997; sixth column, 1 July 
1998, 15 July 1998, 29 July 1998, 12 August 1998. 

proportional to a function E12(t) of deterministic en­
vironmental variables. There are no density-dependent 
effects; that is, E12(t) and E21(t) do not depend on the 
seal density in either compartment. 

Assumption 3 

The upper bound M(t) for the number of seals that may 
haul out at the study area during pupping season can 
be approximated by: 

M t( )  = βe − −( /day of year + t 24 )2 

eqn 1γ δ

where t is the hour of the day and β, γ and δ > 0 are pos­
itive constants. The functional form in this assumption 
was suggested by the maximal weekly haul-out counts, 
as shown in Fig. 2. Three points should be emphasized. 

Fig. 2. Maximal counts at the haul-out site during 1 July−18 
August. Each bar represents 1 week. The height of each bar is 
the mean maximal count recorded at the haul-out site for that 
week, averaged over the years 1995 and 1997–99. Based on 
this graph, the function M(t) was assumed proportional to a 
normal curve. The dotted normal curve shown is not M(t); see 
assumption 3 in the text. 

First, M(t) is not the population size but is simply a 
functional form assumed to describe the upper bound 
for the number that haul out at the study area. Seal 
monitors use various techniques to estimate population 
sizes from haul-out counts (Pitcher & McAllister 1981; 
Thompson & Harwood 1990; Moss 1992; Watts 1992; 
Huber 1995; Matthiopoulos et al. 2004) but we did not 
address or model population size in this study. Secondly, 
M(t) is not the normal curve fitted to the data in Fig. 2. 
The parameters β, γ and δ in equation 1 were estimated, 
along with the rest of the model parameters, from cen­
sus time series data as described in the section on model 
parameterization. Thirdly, the functional form of M(t) 
depends on the seasonal context. Maximal counts do 
not follow a normal curve throughout the year. 

Assumption 4 

The system recovers rapidly after disturbance. Spe­
cifically, the values of  M(t), E12(t) and E21(t) remain 
approximately constant during the time it takes the 
system to return to ‘steady state’ dynamics. 

Assumption 5 

The main source of noise in the census data is demo­
graphic stochasticity, which can be modelled with a 
stochastic ‘birth-and-death’ (arrival-and-departure) 
process, as detailed below in the section on the stochastic 
model. This assumption was motivated by a post-hoc 
inspection of model residuals. 

   

The dynamics of ‘compartmental models’ are typically 
described by differential equations of the form: 

dN 
[inflow rate] [outflow rate]= −  

dt
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Given the first three assumptions, this becomes: 

dN 
( )(  ( )  − N )] − [bE ( ) ] eqn 2= [aE12 t M t 21 t N 

dt 

Here N(t) is the number of seals hauled out at hour t, M(t) 
is the upper bound for the number that may haul out as 
given in equation 1, E12(t) and E21(t) are the functions of 
environmental variables to be determined, and the para­
meters a and b > 0 are constants of proportionality. Given 
assumption 4, it can be shown by the methods of multiple 
time scale analysis (Hoppensteadt 1974; Tikhonov, 
Vasil’eva & Sveshnikov 1985; Lin & Segel 1988) that, in 
the absence of disturbance, the solution of the differential 
equation 2 is well approximated by the algebraic equation: 

M t( )
N t( )  = eqn 3

bE21( )t
1 + 

aE12( )t 

Note that equation 3 depends on the ratio of the two 
environmental functions and the ratio of  the para­
meters b and a. Replacing the ratios in equation 3 by 
α = b/a and E(t) = E21(t)/E12(t), and substituting the 
expression for M(t) from equation 1, yields the deter­
ministic mathematical model: 

−γ (day of year + t/24−δ)2 

βe
N t( )  = eqn 4

1 + αE t( )  

where α, β, γ and δ > 0 are constant parameters to be 
estimated from data. 

   

Noise is ubiquitous in ecological systems. In order to 
link the model represented by equation 4 to data, one must 
first model the departure of the data from the deter­
ministic predictions. Under assumption 5, the noise 
is approximately additive on the square-root scale 
(Dennis et al. 2001): 

−γ (day of year + t/24−δ)2 

βe
N t( )  = + σε( )t 

1 + αE t( )  

Here the ε(t) are standard normal random variables 
uncorrelated in time, and σ > 0 is a constant parameter. 
This yields the stochastic model: 

2
 −γ (day of year + t/24−δ)2  

N t( )  =  βe 
+ σε( )t  eqn 5

 1 + αE t( )  
  

The square-root transformation arises as a method of 
analysing data from a stochastic birth-and-death pro­
cess. Suppose the number N of seals hauled out is a dis­
crete stochastic birth-and-death process with a linear 
arrival (birth) rate of  the form φ − ηN and a pro­
portional departure (death) rate µN. In other words, in 
a small interval of time ∆t, the approximate probability 
of an arrival is (φ − ηN)∆t, and the approximate prob­
ability of a departure is µN∆t, given that the current 
number of seals hauled out is N (Taylor & Karlin 1984). 

The equilibrium probability distribution for N is then 
a generalized binomial (φ/η, φ/(η + µ)) distribution 
(binomial with non-integer number of trials, reducing 
to an exact binomial if φ/η is a positive integer) with 
mean φ/(η + µ) (Boswell, Ord & Patil 1979). If φ, η and 
µ are slowly varying functions of time, the distribution 
of N will equilibrate towards the binomial evaluated at 
the current values of φ, η and µ. The birth and death 
model is a stochastic version of the deterministic model 
(equation 2), with φ = aE12(t)M(t), η = aE12(t) and µ = 
bE21(t). The equilibrium binomial is well-approximated 
by a Poisson distribution with mean φ/(η + µ). In turn, 
to a good approximation, the square-root of a Poisson 
random variable is normally distributed with a mean 
[φ/(η + µ)]1/2 and with a constant variance that does not 
depend on the value of the mean (Rao 1973). Thus, by 
transforming the observations and model to the square-
root scale, statistical inferences can be accomplished with 
standard approaches based on the normal distribution. 
On the square-root scale, model fitting (parameter estima­
tion) was done with non-linear least-squares, and model 
diagnostic analyses focused on the residuals, as explained 
below in the sections on model parameterization and 
model selection. Transforming a Poisson model to the 
square-root scale has an added advantage: least-squares 
parameter estimates have some theoretical robustness to 
departures of the data from distributional assumptions. 

  

A suite of competing models, having the form of equa­
tion 5, was proposed based on an array of hypotheses 
about the environmental function E(t). Solar elevation 
S(t) and tide height T(t) data were obtained from the 
National Oceanic and Atmospheric Administration 
(NOAA), USA, web sites http://www.srrb.noaa.gov/ 
highlights/sunrise/azel.html and http://co-ops.nos.noaa.gov, 
and current speed predictions C(t) were obtained from 
the University of South Carolina, USA, web site http:// 
tbone.biol.sc.edu/tide/. These environmental variables 
exhibit temporal aperiodic oscillations; they were non­
dimensionalized and normalized so that: 

1 ≤ S(t), T(t), C(t) ≤ 2 

The tidal oscillation exhibits high and low tides of 
widely varying magnitudes (Fig. 1; bottom). Given 
that the animals might respond in the same way to all 
tidal highs and lows regardless of exact values, another 
environmental variable was constructed: tide height 
Te(t) with ‘equalized extrema’. To construct Te(t) from 
T(t), all local maximum values of T(t) were set equal to 
2, all minimum values were set equal to 1, and the oscil­
lation was splined between these points. An equalized 
extrema current variable Ce(t) was constructed from 
C(t) in the same manner. Twenty-three possibilities for 
E(t) involving powers of the environmental variables 
S(t), T(t), Te(t), C(t) and Ce(t) were posed, which gave 
rise to 23 alternative mathematical models (Table 1). 

http://www.srrb.noaa.gov/
http://co-ops.nos.noaa.gov
http://
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Table 1. Model comparison. Least-squares (LS) parameters 
were estimated for each of the 23 alternative models grouped by 
the arrangement of variables in E(t); the variance parameter 
σ2 of  the likelihood function was estimated from the residuals. 
AIC was computed from σ2, the number of  parameters 
(including σ2), denoted here by κ, and the number of data 
points (389). *Best model in each group. The model with 
E t  = Ce

q t T r ( )  t was selected because it was the more ( )  ( )/  
parsimonious of the two best-fitting models. The LS parameters 
for this model are α = 3·735, β = 181·6, γ = 0·001158, δ = 215·2, 
q = 3·774 and r = 7·255 

as well as the goodness-of-fit; models having more 
parameters should be penalized. The Akaike informa­
tion criterion (AIC) is an information–theoretic model 
selection index designed to select the model closest to 
the ‘truth’ from a suite of alternative models (Burnham 
& Anderson 2002; Peek, Dennis & Hershey 2002; 
Gibson et al. 2004; Rushton, Ormerod & Kerby 2004). 
For LS parameters the criterion is equivalent to: 

AIC = n ln 22 + 2κ 

E(t) σ2 κ AIC ∆i R2 where n is the number of observations, 22 = RSS(#)/n is 
the variance of the likelihood function as estimated from 

1 13·5 5 1023 139 0·14 the residuals and κ is the number of model parameters, 
T r 13·5 6 1025 141 0·14 including σ2. The candidate model with the smallest 

1/T r 

1/ 

Te 
r 

Te 
r 

13·5 
11·1 
13·5 

6 
6 
6 

1025 
948 

1025 

141 
64 

141 

0·14 
0·30* 
0·15 

AIC value, denoted AICmin, is the model closest to the 
‘truth’. Model comparison is based on relative, rather 
than raw, AIC values. Thus, models are ranked accord-

S u 

1/S u 
12·4 
13·5 

6 
6 

991 
1025 

107 
141 

0·22* 
0·14 

ing to the AIC differences ∆i = AICi – AICmin, with the 
best model having ∆i = 0. Models with ∆i > 10 generally 

C q 

1/C q 

1/ 

Ce 
q 

Ce 
q 

12·4 
12·6 

13·5 
13·5 

6 
6 

6 
6 

991 
998 

1025 
1025 

107 
114 

141 
141 

0·22* 
0·20 

0·14 
0·14 

are considered significantly inferior to the best model, 
and can be rejected (Burnham & Anderson 2002). 

Goodness-of-fit was computed as: 

C q S u 

S u 

S u/T r 

Ce 
q 

12·3 
11·6 

10·5 

7 
7 

7 

989 
968 

927 

105 
84 

43 

0·22 
0·27* 

0·34* 

R 

data 

2 1= −  
(∑ 

2 

( )  

− ) 
RSS 

observation mean 

# 

S u/Te 
r 13·3 7 1022 138 0·16 where ‘mean’ denotes the mean of the square-roots of 

C q/T r 

/T r 

C q/ 
/ 

C q S u/T r 

S u/T r 

C q S u/ 

Ce 
q 

Te 
r 

Ce 
q Te 

r 

Ce 
q 

Te 
r 

10·2 
9·5 

13·0 
12·0 

10·2 
9·3 

13·5 

7 
7 
7 
7 

8 
8 
8 

919 
890 

1012 
981 

921 
884 

1028 

35 
6 

128 
97 

37 
0 

144 

0·35 
0·40* 
0·18 
0·24 

0·35 
0·41* 
0·15 

the observations. This R2 value estimates, on the square-
root scale, the proportion of the observed variability 
that is explained by the model. The higher the R2 value, 
the better the model fit, with R2 = 1 denoting a perfect fit. 

The R2, AIC and ∆i for the suite of candidate models 
are shown in Table 1. 

S u/Ce 
q Te 

r 12·0 8 983 99 0·24 
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  

Parameters for each of the 23 alternative models were 
estimated from the data using the method of least-
squares (LS) on the square-root scale. The LS method 
(as opposed to fitting the Poisson or binomial models 
directly with maximum likelihood) relaxes many of the 
assumptions about the distribution of the residual 
errors (Dennis et al. 2001). In this method the residual 
sum of squares (RSS): 

2 

RSS θ =  observation − model prediction( ) ∑ (
data 

) 
is minimized as a function of the vector θ of model 
parameters. Here ‘model prediction’ refers to the pre­
diction generated by the deterministic model given in 
equation 4. The minimizer # is the vector of LS para­
meter estimates for the model. 

  

When comparing models, one should use a selection 
criterion that takes into account the number of parameters 

Results 

The model with the lowest AIC (∆i = 0) and highest 
R2 (0·41) was the one with the environmental func­

q u rtion E t  = Ce t S  t T  t   (Table 1). The model with ( )  ( ) ( )/  ( )  
E t  = C q t T r ( )  t ranked a close second best, with ∆i =( )  e ( )/  
6 and R2 = 0·40. The third best model lagged signi­
ficantly behind, with ∆i = 35 > 10 and R2 = 0·35. Thus, all 
models except the best two were eliminated from fur­
ther consideration. The model with E t( )  = Ce

q ( )/  t T r ( )  t 
was selected as the more parsimonious of the two best 
models, yielding the deterministic model: 

−γ (day of year + t/24−δ)2 

βe
N t( )  = 

q 
eqn 6

C t( ( ))  e1 + α 
T t  r( ( ))  

Simulations of equation 6, using the LS parameters 
α = 3·735, β = 181·6, γ = 0·001158, δ = 215·2, q = 3·774, 
and r = 7·255, are shown in Fig. 1. 

Simulations of equation 6 predict that seals begin to 
leave the beach about midway between high and low 
tides, and begin to return to the beach between low and 
high tides but before the midpoint. Thus, haul-out num­
bers are predicted to be highest approximately midway 
between high and low tides, and lowest between low 
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and high tides before the midpoint. Although this rule 
of thumb agrees with the model to within approximately 
2 h, the exact timings of the maximal and minimal pre­
dictions depend, in a non-intuitive way, on the super­
position of tidal and current cycles. For example, in the 
first column of  Fig. 1 maximal predictions lag the 
midpoint between high and low tides by approximately 1 h, 
while in the fifth column maximal predictions precede 
the midpoint by approximately 1 h. The data are suffi­
ciently noisy, however, that these deviations from the rule 
of thumb are probably insignificant. Model simulations 
also predict that daily haul-out patterns vary with tem­
poral position within the biweekly tidal /current cycle. 
For example, during the biweekly cycle, haul-out lows are 
predicted to shift from earlier to later in the day, coin­
ciding with a similar shift in tide/current fluctuations. 
Finally, as a consequence of the seasonally dependent 
M(t) (Fig. 2), counts are predicted to be low in early 
July and to reach their maximum at the end of July, 
after which they once again decrease. Data trends are 
generally consistent with all of these predictions (Fig. 1). 

Discussion 

  

Although the data trends generally comport with 
deterministic model predictions, hourly counts show 
considerable variability around these predictions. The 
following considerations should be kept in mind when 
interpreting these results. 

Environmental stochasticity 

Hauled-out harbour seals are highly sensitive to heat 
load. Under some conditions these animals move to 
the water to cool (Watts 1992), whereas under other 
conditions they haul out to absorb solar radiation. 
They respond to other environmental variables as well, 
such as wind speed and wave intensity. These types of 
environmental variables were not included in the deter­
ministic model because they cannot be predicted far 
in advance. The effects of environmental stochasticity 
could be dramatic: contrary to predictions, on both 15 
July 1998 (Fig. 1; column 6, second day from top) and 
14 July 1999 (Fig. 1; column 4, second day from top), 
few seals were counted on the north beach. The morn­
ings of both days, however, followed 7–8 h of sustained 
38–56 km h−1 north-north-west winds with gusts of up 
to 64 km h−1 during the afternoon and evening of the 
previous day. Wind waves may have discouraged north 
beach landings and/or altered food availability. When 
these 2 days were deleted from the analysis, the R2 value 
rose from 0·40 to 0·46. 

Demographic stochasticity 

Harbour seals, like many large mammals, exhibit a high 
degree of individual variation in behaviour (Wilson 

1975). In groups of individuals that repeatedly use the 
same site, individual haul-out patterns may differ markedly 
(Brown & Mate 1983; Thompson et al. 1989). 

Error in modelling assumptions 

Alternative haul-out sites were available on Violet Point. 
The east and south sides commonly contained hauled-out 
animals that could not be seen from the observation 
point. Although harbour seals have preferred haul-out 
sites (Pitcher & McAllister 1981), it is likely that animals 
change sites from time to time, especially in response to 
disturbance, food availability and/or pupping activity 
(Brown & Mate 1983). These possibilities are not 
accounted for in the model. Furthermore, the model 
ignores possible density-dependent effects such as social 
facilitation and crowding. 

Observational error 

Counts made from the observation point were not as 
accurate as aerial counts would have been, especially 
under conditions of marginal light. Typically seals 
clumped together and faced the same direction perpen­
dicular to the line of view and so were often difficult to 
distinguish or impossible to see. Observers found 
counting difficult if  the angle of vision from the hori­
zontal was less than about 8°. 

       

Differential equations such as equation 2 are much 
more difficult and time consuming to simulate and 
parameterize than simple algebraic equations such as 
equation 3, especially when they depend on environmental 
variables. Differential equations must be integrated 
continuously over the past environmental history using 
computer software, while the algebraic equation depends 
only on the current state of  the environment. Fast 
recovery time after disturbance (assumption 4) intro­
duces two time scales into the problem, the time scale of 
the recovery and the time scale of the environmental 
variables. Multiple time scale theory then allows one to 
replace equation 2 by equation 3 in the absence of sys­
tem disturbance. Thus, time scale reduction is a useful 
tool for managers. 

    

While assumption 4 vastly simplifies model selection, 
parameterization and simulation, it also confounds 
identification of E12(t) and E21(t): equations 3 and 4 
depend on the ratio of the environmental functions 
E21(t) and E12(t) rather than on the individual functions 
themselves. The results of the model selection pro­
cedure suggest that the ratio can be expressed in the form: 

E21 Ce
q 

E = = 
E12 T r 
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Of course, this does not imply that E21 = Ce
q and E12 

= T r. The model equation 6 could have arisen from 
many, indeed, infinitely many, differential equations of 
the form given in equation 2. Three representative pos­
sibilities are those having: 

1 1
E = and E = eqn 712 q 21 rCe T 

E = T r and E = C q eqn 812 21 e 

r/2 q/2T C eE = and E = eqn 912 q/2 21 r/2C e T 

Equation 7 would imply that seals on the beach 
respond primarily to tide height or to a direct correlate 
of tide height, while those in the water respond primarily 
to current or to a direct correlate of current. This seems 
more likely than the situations expressed in equations 
8 and 9. In equation 8, seals on the beach respond 
primarily to current and those in the water respond 
primarily to tide height. In equation 9, seals on the beach 
and in the water respond to both tide and current. It 
seems unlikely that seals hauled out on the beach respond 
directly to current; however, indirect monitoring of 
current by these animals may be possible given that 
current is roughly the rate of change of tide height with 
respect to time (C ≈ dT/dt), depending on local wind 
conditions, river discharges, basin shapes, and coastal 
geometries (Anonymous 1983; Duxbury, Duxbury & 
Sverdrup 2000). It was not possible to choose among 
equations 7–9 on the basis of the present data set. Iden­
tification of the individual functions E12(t) and E21(t) 
requires observation of seal numbers post-disturbance, 
with data collected on a temporal scale much finer than 
1 h as the animals return to the beach. 

Assuming the situation described by equation 7, the 
following functional hypothesis is suggested for seals 
that use the north beach of Protection Island as a haul-
out site. Food availability peaks at flood current, which 
corresponds with low haul-out numbers. Hauled-out 
seals use falling tide levels as a cue to leave the beach to 
feed, a trend that continues until the midway point between 
low and high tides, when few or no seals remain on the 
beach. A decline in flood current, however, signals a 
decline in food availability so seals return to the beach. 

The relationship between current and patterns of 
harbour seal movement has received little attention. 
Thompson et al. (1989), however, noted that harbour 
seals using haul-out sites in the vicinity of Eynhallow 
Sound, Orkney, UK, appeared to pattern their haul-
out behaviours differently depending on whether the 
tide was rising (incoming current) or falling (outgoing 
current). They hypothesized that seals that spent less 
time on shore during rising tides were responding to 
increases in food availability brought about by in­
coming flood tides. Their observations and hypothesis 
are consistent with the model predictions presented 
here for seals using Protection Island. 

It is of interest that models using Ce yielded better 
predictions than those using C (Table 1). Thus, it appears 

that current direction may play a more crucial predictive 
role than current strength. This interpretation would be 
consistent with the functional hypothesis, given that food 
availability is likely to be maximal at flood current regard­
less of actual current speed. It is also of interest that equa­
tion 6 performed about the same as the model including 

q u rsolar elevation with ( )  = Ce ( )  t t  (Table 1). E t  t S  ( )/  T ( )  
Other studies have found correlations between solar ele­
vation (time of day) and haul-out behaviour (Stewart 1984; 
Watts 1992; Thompson et al. 1997). These correlations 
with time of day could be related to the fact that con­
secutive days have roughly similar tidal patterns; they also 
could be related to the effects of heat loading that com­
monly occur about midday and afterwards (Watts 1992). 

   

The methodology employed in this study is quite general. 
It has been used to predict the diurnal abundance pat­
terns of loafing seabirds in a single habitat (Henson et al. 
2004) as well as in a system of habitats (Damania 2004), 
and can probably be used to predict the diurnal move­
ments of a variety of marine birds and mammals. A 
general approach for modelling the occupancy dynam­
ics of one habitat patch is as follows. 
1. Habitat census data should be collected at discrete 
time intervals much shorter than the periods of environ­
mental oscillations, and should be collected throughout 
the cycle of environmental change. 
2. The per capita flow rates into and out of the habitat 
can be assumed to be proportional to functions E12(t) 
and E21(t) of environmental variables, and then incor­
porated into a two-compartment differential equation 
model in the form of equation 2. 
3. The form of the function M(t) that describes the 
maximal habitat occupancy should be based on his­
torical maximal counts from the season of interest. The 
functional form of M(t) for moulting season in seals, 
for example, would most probably be different than 
that for pupping season. Over short periods of  time, 
M might be considered constant. 
4. If  the system recovers rapidly following disturbance, 
time scale analysis can reduce the differential equation 
model to a simple algebraic equation for dynamics in 
the absence of disturbance. The algebraic model will be 
easy to parameterize and simulate. 
5. A suite of alternative hypotheses for E12(t) and E21(t) 
can be proposed, thereby generating a suite of candidate 
models. If the candidate models do not all have the same 
number of parameters, the best model should be selected 
with an information-theoretic criterion such as the AIC. 
6. Parameter estimation should be based on a stochastic 
model that accounts for the major type of noise in the 
system. 
7. Ideally, an independent data set (not used for model 
fitting) should be reserved or collected for the purpose 
of model validation or to test a priori model predictions. 
8. If the environmental variables are largely deterministic, 
for example tide height, current speed, solar elevation 
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and hour of the day, the model can be used to make long-
range predictions of habitat occupancies. 

    
 - 

As mandated by the CSA and MMPA, significant 
resources are spent monitoring seal populations in the 
UK and USA. Much attention has been devoted to 
finding optimal times for such counts because seal popu­
lation estimates are based on maximum haul-out counts 
(Pitcher & McAllister 1981; Stewart 1984; Thompson 
et al. 1989, 1997; Thompson, Van Parijs & Kovacs 2001; 
Adkinson, Quinn & Small 2003; Jeffries et al. 2003). The 
fact that haul-out patterns vary by season and among 
sites within seasons complicates this process (Sullivan 
1980; Adkinson, Quinn & Small 2003; Simpkins et al. 
2003). The modelling approach developed in this study 
not only provides management personnel with a power­
ful tool to identify more accurately optimal census 
times, but also enables them to identify the environmental 
forces correlated with local haul-out, to predict haul-out 
patterns into the future, and to identify times at which 
to minimize human disturbance. 

At the Washington study site during the pupping 
season, managers can expect maximal daily haul-
outs to occur during receding tides, approximately 
midway between high and low tides. The largest maxi­
mal daily haul-outs during the pupping season are 
expected to occur in the last week of July. Three points, 
however, must be emphasized. First, resource managers 
should note that the precise environmental function 
E t  = Ce

q t T r ( )  t identified in this study, along with ( )  ( )/  
the parameter estimates, are probably site- and season-
specific. Each haul-out site and season may require 
a new application of the model selection procedure. 
Secondly, the modelling procedure is not designed to 
make predictions of population size but only numbers 
of hauled-out seals. Thirdly, the form of the function M(t) 
depends on the seasonal context. 

We wish to underscore two distinctive aspects of the 
methodology in this study. First, we used an information– 
theoretic criterion (in our case the AIC) instead of tradi­
tional hypothesis testing to choose the best model 
from a suite of a priori alternatives. This powerful and 
increasingly popular approach requires a more mech­
anistic understanding of the system, dovetails nicely 
with mathematical modelling, and penalizes models for 
overfitting. The information–theoretic paradigm for 
modelling species’ distributions was featured in a recent 
series of articles (Cabeza et al. 2004; Engler, Guisan & 
Rechsteiner 2004; Frair et al. 2004; Gibson et al. 2004; 
Jeganathan et al. 2004; Johnson, Seip & Boyce 2004; 
Rushton, Ormerod & Kerby 2004) in the Journal of 
Applied Ecology. Secondly, our mathematical approach 
differs significantly from statistics-based analyses car­
ried out by previous workers (Schneider & Payne 1983; 
Stewart 1984; Watts 1992; Thompson et al. 1997). 
Statistics-based analyses are useful in that they allow 

Fig. 3. Haul-out counts averaged in relation to (a) hours 
before and after low tide and (b) hours of day. Error bars 
depict standard deviations. 

identification of environmental factors correlated with 
dependent variables. Commonly, however, such analyses 
entail data averaging, a procedure that can mask impor­
tant relationships among variables. Figure 3 shows a 
graph generated when the data were averaged in rela­
tion to (a) hours before and after low tide and (b) hour 
of the day. Apparent patterns emerge, but the biweekly 
shift in count minima and maxima, daily haul-out pat­
tern variability and seasonal haul-out pattern variabil­
ity disappear, a result reflected in the large standard 
deviations (compare Figs 1 and 3). Moreover, haul-out 
censuses are often reported as proportions of  the 
maximum number of seals hauled out at a site (Schneider 
& Payne 1983; Stewart 1984; Watts 1992); this can also 
mask informative differences among daily patterns. 

For resource personnel who make management 
decisions about marine bird and mammal populations, we 
believe the mathematical methodology outlined in this 
study (in tandem with preliminary statistical exploration) 
can offer a distinct advantage over purely statistics-based 
recommendations. 
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