Entanglement trends and impacts

Amy R. Knowlton, James S. Clark, Philip K. Hamilton, Scott D. Kraus, Marilyn K. Marx, Heather M. Pettis, Rosalind M. Rolland, and Robert S. Schick

Three approaches

- Frequency and severity of entanglements by year
- Injured whale monitoring
- Impacts on health, reproduction, and survival

Entanglement configuration risk

Entanglement injuries

From Knowlton et al. (2012) Monitoring North Atlantic right whale *Eubalaena glacialis* entanglement rates: a 30 year retrospective. Marine Ecology Progress Series 466:293-302

1,269 entanglement interactions between 1980-2012

Assessment of data through 2009 showed 83% of the population has experienced one or more entanglement events

Higher proportion of moderate-severe injuries since late 1990's

Pattern persists through 2012 analysis

Scar coding is now being done for 2013-2015 data

Entanglement configuration risk

113 cases with attached gear

Majority of entanglements are high configuration risk since mid 1990's

Rate of entangled whales has increased significantly over 30 year period

Year

Injured whale monitoring: a near realtime assessment

- As of December 2016, there are 63 whales with severe injuries acquired between March 2004 to December 2016 (majority from 2010 to present) that are being monitored
- 84% entanglement, 14% vessel strike
- 43% in declining health
- 43% could not be assessed because they either disappeared or images too poor but could be in declining health

	Entar	nglement	Vessel Strike	Other	Total
	Gear Present	No Gear Present			
Decline in Condition	10	14	2	1	27
Inconclusive	11	11	5	0	27
No Decline in Condition	0	4	1	0	6
Extended Monitor	1	2	1	0	4
Total	22	31	9	1	63

Impact of anthropogenic injury on health by injury type for North Atlantic right whales on the active injury monitoring list.

Assessing impacts of entanglement

- Use Hierarchical Bayesian modeling to compare health of right whales impacted by entanglement to un-impacted whales
- Evaluate potential effect of entanglement on reproductive capacity and survival
- Use different categories of entanglement severity to compare the degree of lethal and sublethal health impacts

Methods

- Determine monthly health score and anomaly for each individual over their lifetime
- Categorize 1,195 entanglement events documented from 1980-2011 into 6 entanglement impact categories

Methods

- Determine monthly health score and anomaly for each individual over their lifetime
- Categorize 1,195 entanglement events documented from 1980-2011 into 6 entanglement categories
- Determine timeframe within which entanglement occurred and duration if gear was attached

Methods

- Determine monthly health score and anomaly for each individual over their lifetime
- Categorize 1,195 entanglement events documented from 1980-2011 into 6 entanglement categories
- Determine timeframe within which entanglement occurred and duration if gear was attached
- Carried out 4 independent analyses

ANALYSIS 1 - Mean health anomaly of impacted vs. unimpacted

Create "entanglement health windows"

Entanglement health windows

<u>With gear (red box):</u> Up to 3 months prior to first sighting with gear to 3 months after last sighting with gear

Scars only (blue box): Up to 3 months prior to first detection with scars

Calculated average health anomaly score of all months in window

ANALYSIS 1 - Mean health impacted vs. unimpacted

• Create "entanglement health windows"

- Compare average monthly anomalies
 - 6 entanglement categories vs. unimpacted (never experienced an entanglement)
 - reproductive females vs. all other demographic groups

ANALYSIS 1 – Mean health impacted vs. unimpacted

ANALYSIS 1 – Mean health anomaly of impacted vs. unimpacted

ANALYSIS 2 – Impact on calving threshold

HEALTH IN CALVING VS. NON-CALVING FEMALES

ANALYSIS 2 – Impact on calving threshold

- For reproductive females, assess the % of months within the entanglement windows that fell below health score of 67 for 6 entanglement levels
- Compare to unimpacted reproductive females

ANALYSIS 2 - Percentage of Months during Entanglement Windows with Estimated Health < 67

Analysis 3 Impact on calving frequency

- Female considered "available" to give birth 3 years after last calf and until and including next calf
- If female experienced an entanglement she was placed in that entanglement severity category for 3 years and then shifted to recovered status (assumption is if there is no negative impact, she would still calve at 3 years)

Analysis 3 Impact on calving frequency

Example of Female X: green = years available to calve

2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
CALF			CALF		Severe	Severe	Severe		CALF
L	NT . 4 .)	/	C] \	Deer	
Not impacted			Severe			Kecovered			
2 calves/2 avail yrs			0 calves/2 avail yrs		1 calf/ 2 avail				

ANALYSIS 4 – Survival of impacted whales by gender

- Create Kaplan-Meyer survival curves by 3 injury categories
- Evaluate survival after first sighting with scars or last sighting with attached gear for an individuals last entanglement event
- Compare males and females

ANALYSIS 4 - Survival by Gender

Summary

- Frequency of high risk gear configurations and moderate to severe injuries from entanglement are increasing
- Health of right whales is impacted by entanglement depending on severity
- Reproductive female health is more negatively impacted than other demographic groups
- The sublethal impacts on reproductive females is reducing their ability to get pregnant
- Survival after a <u>severe</u> entanglement drops dramatically for both females and males

Future work

- Continue efforts to monitor injuries and health in near real-time to identify emerging issues
- Maintain catalog, scar coding, and visual health assessment programs to monitor changes as management actions are put in place
- Coordinate with NMFS to review all severe injury cases and consider revisions to the serious injury criteria with these new findings in hand

Acknowledgements

Office of Naval Research, Awards:

- N00014-12-1-0286 to University of St. Andrews
- N00014-11-2-6207 to New England Aquarium

North Atlantic Right Whale Consortium

PCAD working group

The right whales