Understanding NARW Abundance and Distribution Through Data Fusion

Rob Schick^{1,2}, Bokgyeong Kang^{2,3}, Alan Gelfand², Erin Schliep⁴, Tina Yack², Chris Clark⁵, Susan Parks⁶, Stormy Mayo⁷, Christy Hudak⁷, Ryan Schosberg⁷, Brigid McKenna⁷

Funding

- US Office of Naval Research
 - N000142312562
 - N000142412501

- NOAA Fisheries
 - NA20NMF0080246
- SERDP
 - RC20-1097

Outline

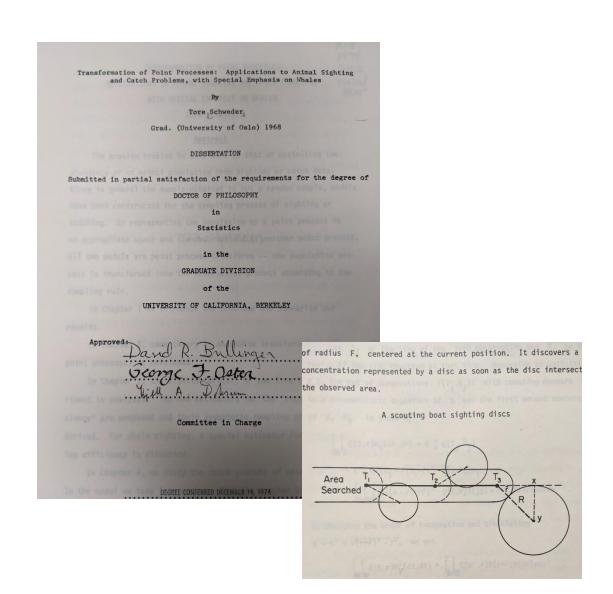
- Introduction to point processes and data fusion
- (Simulation Study)
- Application: NARW in Cape Cod Bay
 - Modeling framework
 - Key assumptions
- Results
- Extensions

NARW

• For right whales, we are fusing two data sources (aerial sightings and PAM) that relate to a spatial point pattern

Point Processes for MM Data Aren't New

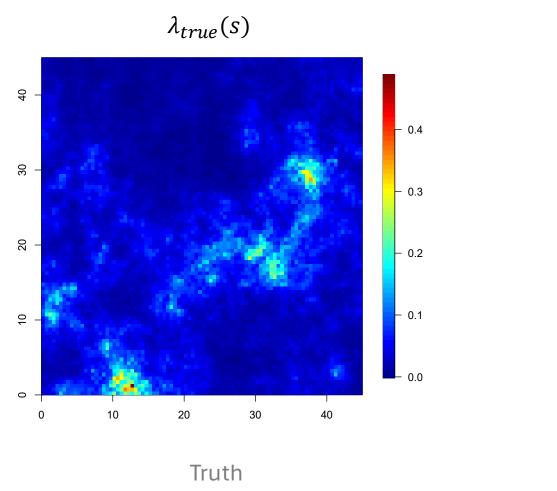
- Schweder 1974
- Hedley and Buckland 2004
- Waagepetersen and Schweder 2006
- Johnson et al. 2013
- Yuan et al. 2017



NARW

- For right whales, we are fusing two data sources (aerial sightings and PAM) that relate to a spatial point pattern
- Have to first consider how the data relate to this point pattern
- We assume a single unobservable
 - True point pattern (S), i.e., the locations of whales &
 - True intensity surface $(\lambda(s))$, for which the point pattern S arises
- Each data source provides a partial realization of the full point pattern
 - Each is a thinned version of S with its own thinning mechanism

True Intensity Surface & Point Pattern

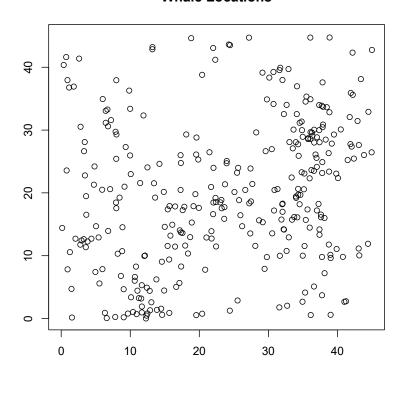


Whale Locations 20 40 10 319

NARWs

Thinning/Degradation to Observations, aka "Approximation of Reality"

Whale Locations

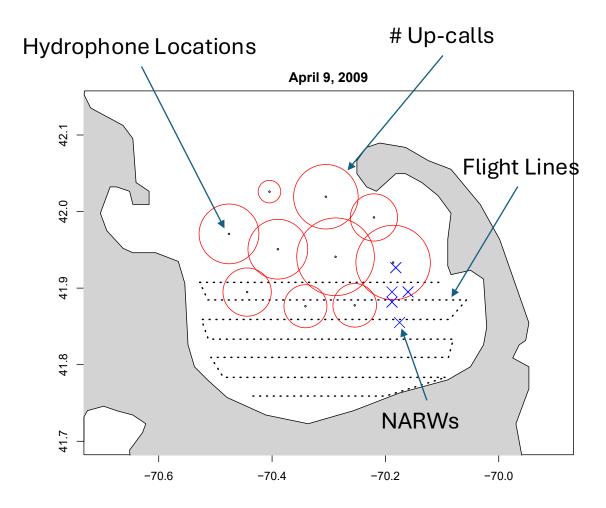


"Truth"

Observed

NARW in Cape Cod Bay

Real CCB Data



Key Assumptions

- Underlying spatial process that is...
- Fixed in time—snapshot
- Detection (thinning) functions are known
- Ancillary DTAG data help with:
 - Availability
 - Call rate
- Could fix these
- Could assign priors

Full Likelihood

 N_k are the $oldsymbol{\mathsf{detected}}$ calls

$$\mathcal{L} = \prod_{\ell=1}^{L} \prod_{\boldsymbol{s} \in \mathcal{S}_{\ell}} \lambda_{dist_{\ell}}(\boldsymbol{s}) \exp^{-\int_{D} \lambda_{dist_{\ell}}(\boldsymbol{s}) d\boldsymbol{s}} \times \prod_{k=1}^{K} \frac{\lambda_{pam_{k}}^{N_{k}} e^{-\lambda_{pam_{k}}}}{N_{k}!}$$

$$imes \prod_{j=1}^J rac{\Gamma(
u)}{\Gamma(\pi
u)\Gamma((1-\pi)
u)} z_j^{\pi
u-1} (1-z_j)_{\bullet}^{(1-\pi)
u-1}$$

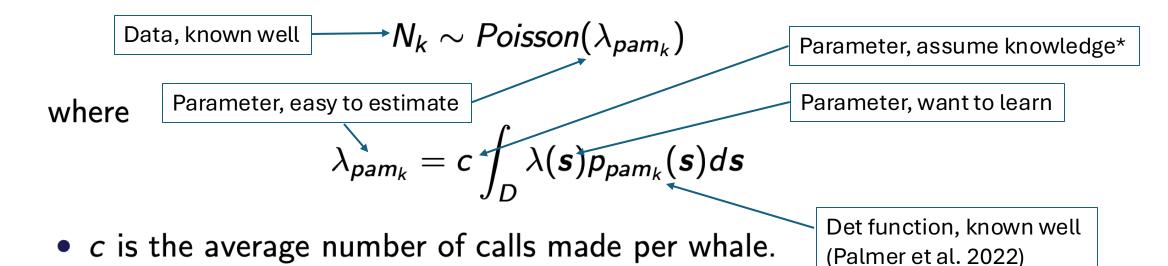
 \mathcal{S}_l are the locations of NARW **observed** from plane

$$\times \prod_{i=1}^{I} \frac{\left(\frac{c}{\tau^2}\right)^{c^2/\tau^2}}{\Gamma\left(\frac{c^2}{\tau^2}\right)} y_i^{c^2/\tau^2 - 1} e^{-c/\tau^2 y_i}$$

 z_j are **ancillary** surfacings from DTAG

Assumptions on Call Rate and Abundance

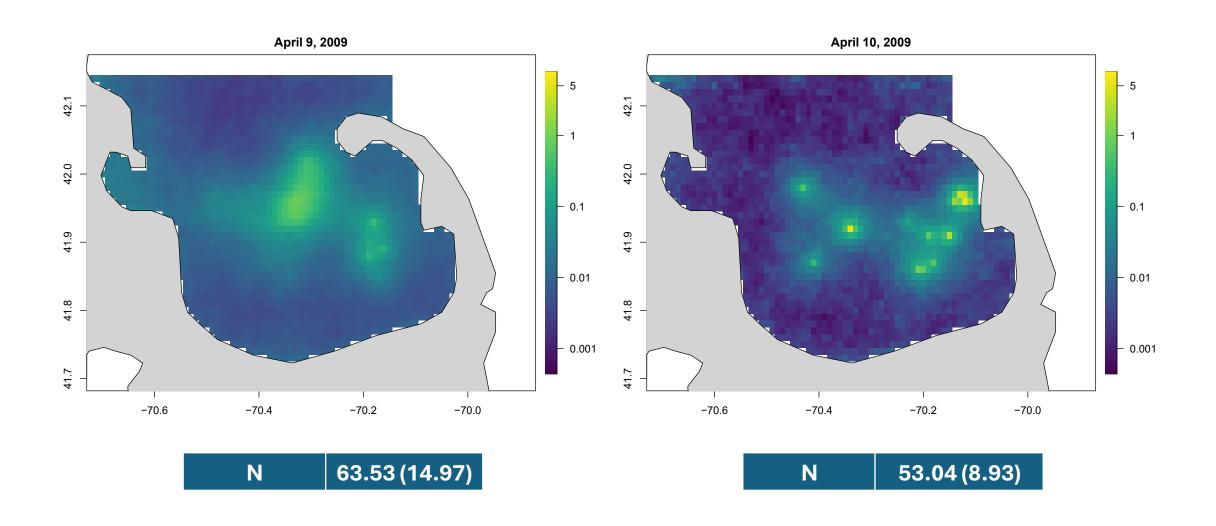
The number of calls detected by hydrophone k is modeled as



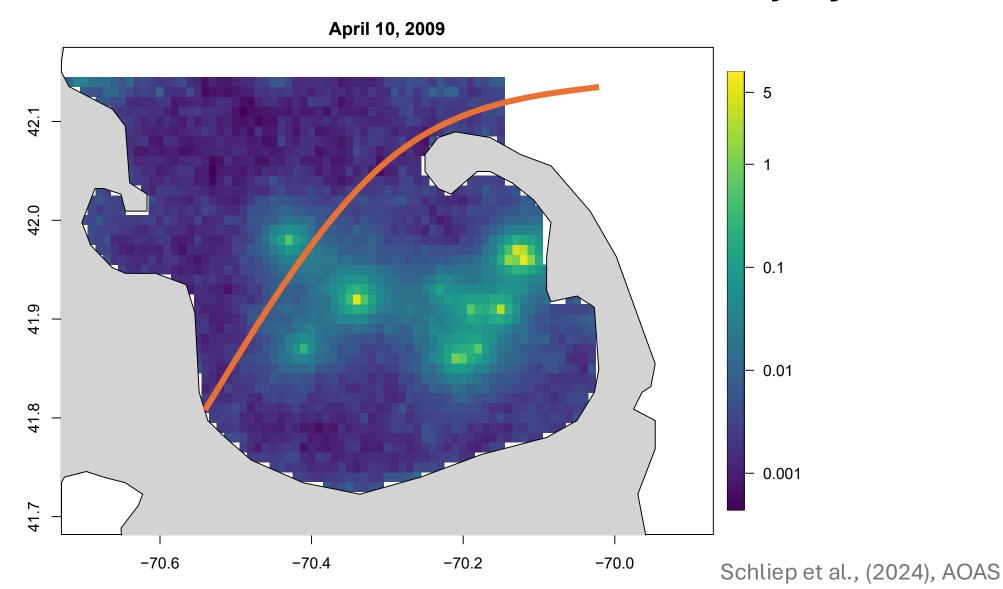
• $p_{pam_k}(s)$ is the detection function for hydrophone k and is a function of distance, ambient noise, and source level of the call

Results

Estimated NARW Abundance (Schliep et al., 2024)

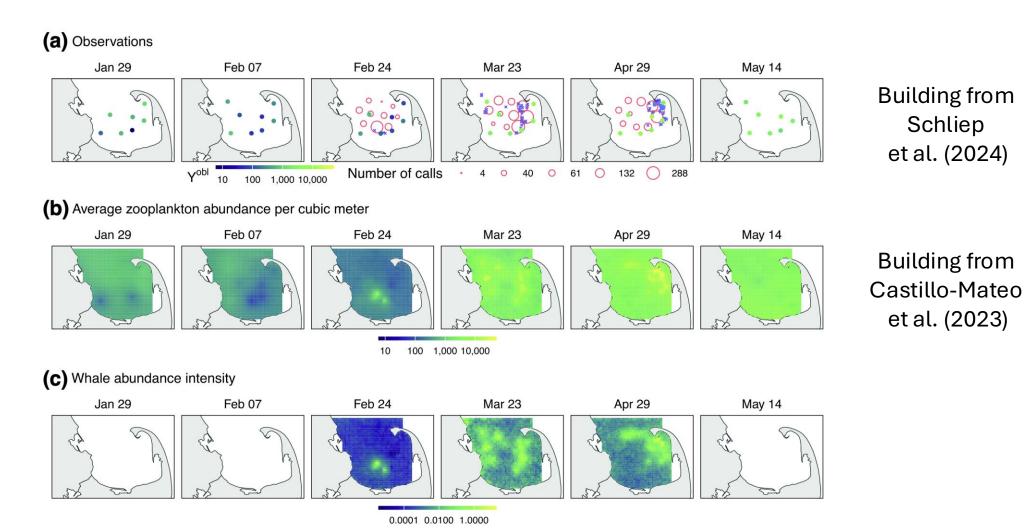


Spatial Inference—Relevance to Serious Injury



Extensions & Other Areas

Extensions—Incorporating Prey (Kang et al., 2025)



Schliep

et al. (2024)

et al. (2023)

Extensions, continued

- Spatial to spatio-temporal is hard because only continuous data (PAM) don't identify individuals
- With localized calls, you could develop and fit a spatial-temporal point process model (we're working on this), but...
- ...latent intensity represents spatio-temporal patterns of calls, not individuals
- Spatial to spatio-temporal is hard without:
 - Underlying movement model
 - Linking calls to specific individuals
 - Behavioral- & individual-specific call rates

Application to Other Systems

- Anywhere with similar data structures
 - Line transect data
 - PAM Array
 - Ancillary data on availability help to inform π
 - Ancillary data on call rates help to inform c
- Southern New England NARW (Laura Ganley, NEAq)
- Monterey Bay Harbor porpoise (Eiren Jacobson, St Andrews)
- Gulf of Maine NARW (Anita Murray, State of Maine)

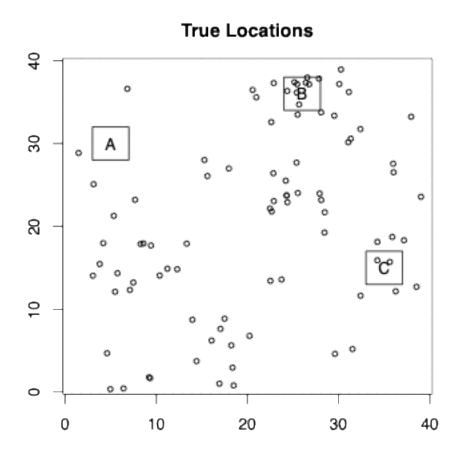
Papers Mentioned

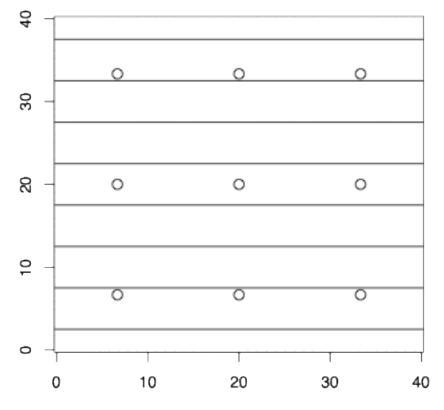
- Castillo-Mateo, J., A. E. Gelfand, C. A. Hudak, C. A. Mayo, and R. S. Schick. "Space-time multi-level modeling for zooplankton abundance employing double data fusion and calibration." *Environmental and Ecological Statistics* 30, no. 4 (2023): 769-795
- Schliep, E. M., A. E. Gelfand, C. W. Clark, C. A. Mayo, B. McKenna, S. E. Parks, T. M. Yack, and R. S. Schick. "Assessing marine mammal abundance: A novel data fusion." *The Annals of Applied Statistics* 18, no. 4 (2024): 3071-3090
- Kang, B., E. M. Schliep, A. E. Gelfand, C. W. Clark, C. A. Hudak, C. A. Mayo, R. Schosberg, T. M. Yack, R. S. Schick, "Joint spatiotemporal modelling of zooplankton and whale abundance in a dynamic marine environment." *Journal of the Royal Statistical Society Series C: Applied Statistics*, 2025; qlaf038

Simulation Study

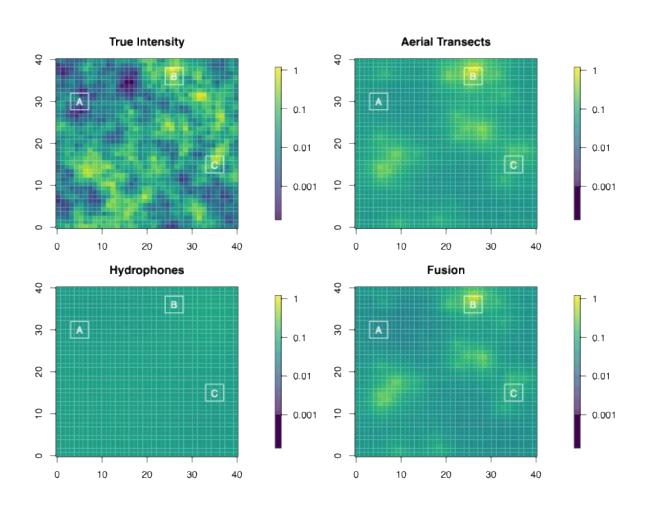
Inspired by CCB

Simulated Point Pattern





Estimating True Intensity Surface

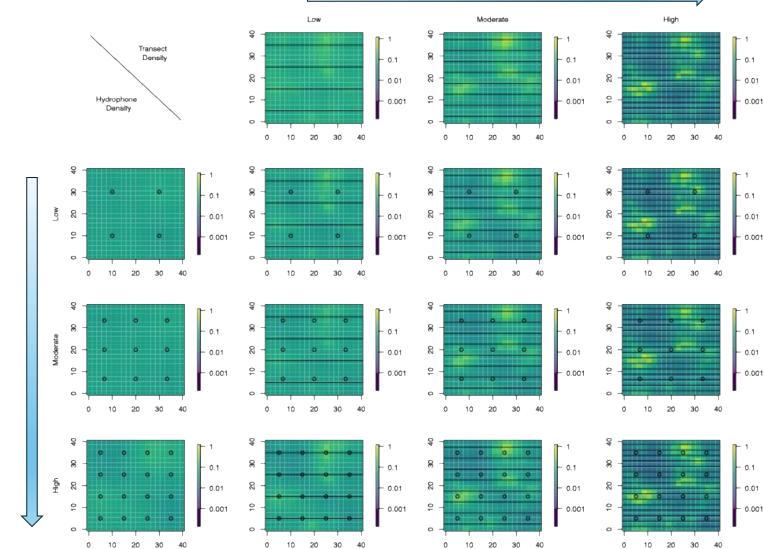


Summary

RMSE of the log posterior intensity and log posterior density

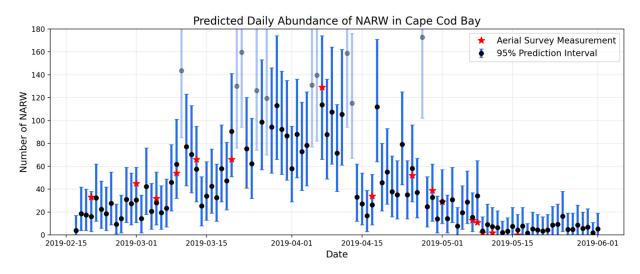
					Log posterior
	Total	Α	В	C	density
Aerial Transect	1.90	2.91	1.21	1.29	-348.97 (12.56)
Hydrophones	1.89	3.08	1.60	1.41	-374.14 (19.67)
Fusion	1.65	2.40	0.97	1.19	-348.29 (14.59)

Simulation Results



More Hydrophones

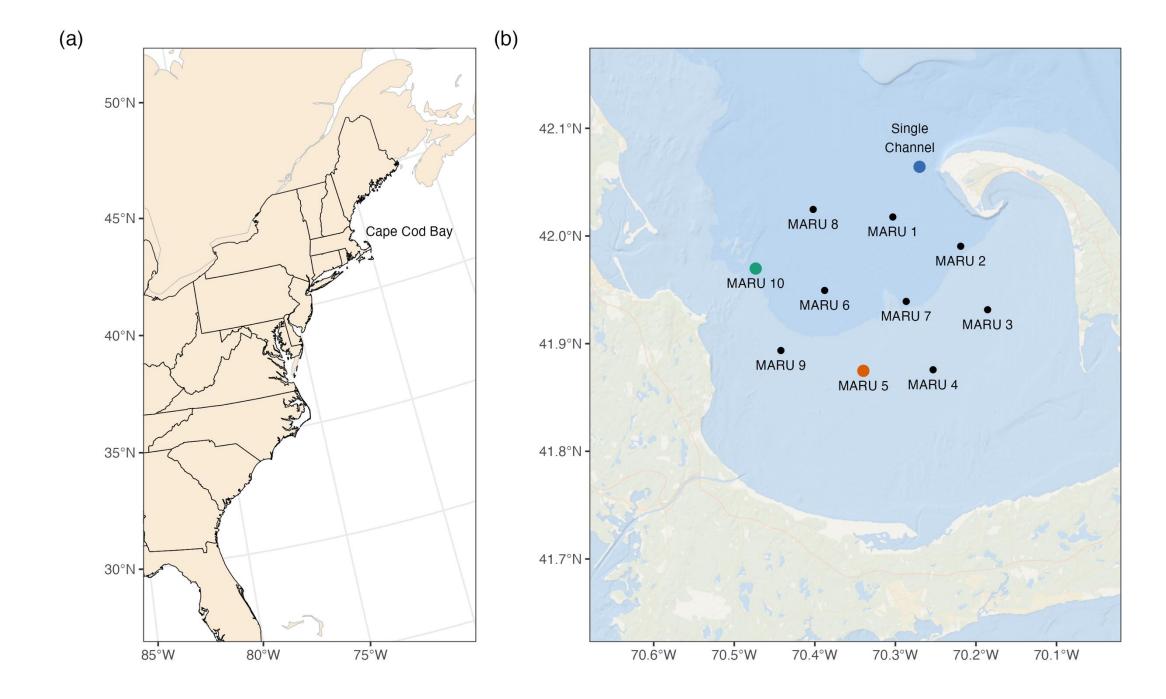
Other Methods



Garcia et al. (2025), ESR 56:101-115

- Calibration between aerialacoustic overlap days
- No process model
- Whales ~ intercept + calls

Extra Slides



Thinning Equations

Distance Sampling

Let $d(s, \ell)$ denote the distance between location s and transect ℓ .

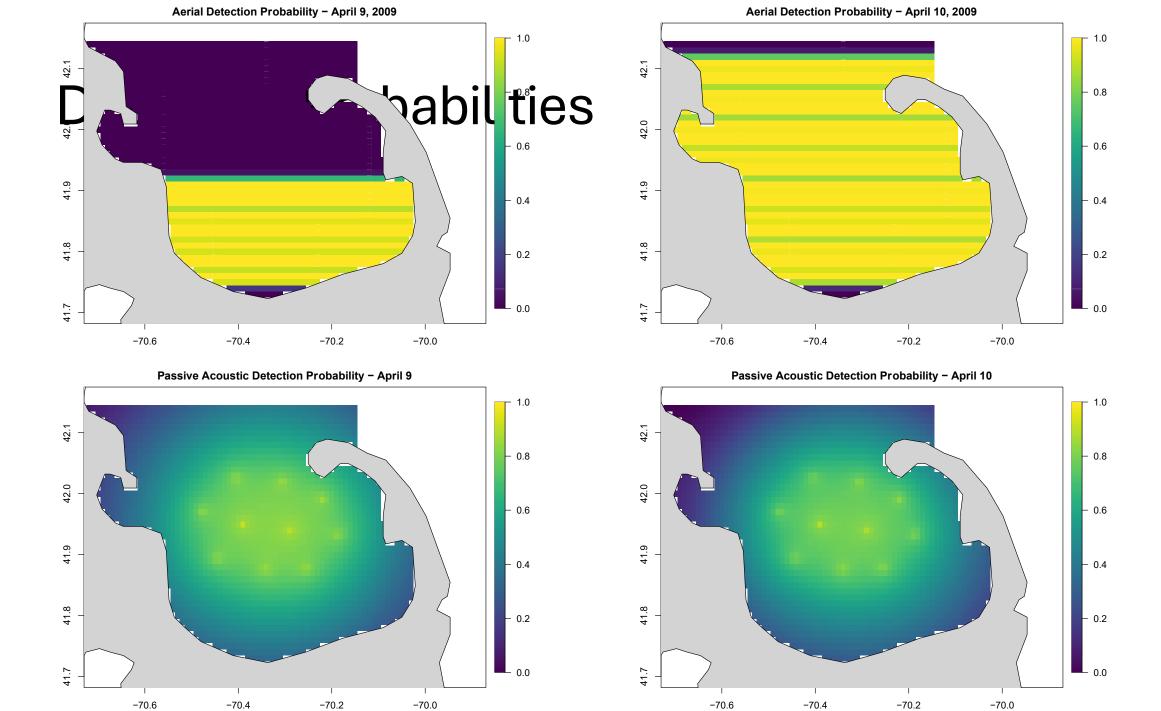
$$p_{dist_{\ell}}(\boldsymbol{s}) = \begin{cases} 1 & d(\boldsymbol{s}, \ell) \leq 0.75km \\ \exp(-(d(\boldsymbol{s}, \ell) - 0.75)^2) & d(\boldsymbol{s}, \ell) > 0.75km \end{cases}$$
Ganley et al. (2019)

Acoustic

Source level is assumed Uniform(141, 197).

$$p_{pam_k}(s) = P(SL(s) - 14.5\log_{10}(d(s, s_k^*)) > 104 + 26)$$

$$p_{pam_k}(s) = egin{cases} 0 & 14.5 log_{10}(d(s, s_k^*)) > 197 - 130 \ 1 & 14.5 log_{10}(d(s, s_k^*)) < 141 - 130 \ 1.20 - 0.26 log_{10}(d(s, h_k)) & else \end{cases}$$



The full likelihood is the product of the two source likelihoods as well as the two auxiliary data sources

Sightings from **Aerial Line** Transects (CCS)

Visual Sighting **Detection Function** (Ganley et al. 2019)

$$\mathcal{L} = \prod_{\ell=1}^{L} \prod_{\boldsymbol{s} \in \mathcal{S}_{\ell}} \lambda_{dist_{\ell}}(\boldsymbol{s}) \exp^{-\int_{D} \lambda_{dist_{\ell}}(\boldsymbol{s}) d\boldsymbol{s}} \times \prod_{k=1}^{K} \frac{\lambda_{pam_{k}}^{N_{k}} e^{-\lambda_{pam_{k}}}}{N_{k}!}$$

$$\times \prod_{j=1}^{J} \frac{\Gamma(\nu)}{\Gamma(\pi\nu)\Gamma((1-\pi)\nu)} z_{j}^{\pi\nu-1} (1-z_{j})^{(1-\pi)\nu-1}$$

$$\times \prod_{i=1}^{J} \frac{\left(\frac{c}{\tau^{2}}\right)^{c^{2}/\tau^{2}}}{\Gamma\left(\frac{c^{2}}{\tau^{2}}\right)} y_{i}^{c^{2}/\tau^{2}-1} e^{-c/\tau^{2}y_{i}}$$

$$\times \prod_{i=1}^{I} \frac{\left(\frac{c}{\tau^2}\right)^{c^2/\tau^2}}{\Gamma\left(\frac{c^2}{\tau^2}\right)} y_i^{c^2/\tau^2 - 1} e^{-c/\tau^2 y}$$

Call rates from DTAGs (Susan Parks and Dave Wiley)

Up-calls (Clark)

Acoustic Detection Function (Palmer et al. 2022)

> Availability from DTAG dive data (Susan Parks and Dave Wiley)

$$\begin{aligned} p_{dist,\ell}(\mathbf{s}) &= \pi f(d(\mathbf{s},\ell)) \\ \mathcal{L} &= \prod_{\ell=1}^{L} \prod_{\mathbf{s} \in \mathbb{N}_{\ell}} \lambda_{dist_{\ell}}(\mathbf{s}) \exp^{-\int_{D} \lambda_{dist_{\ell}}(\mathbf{s}) d\mathbf{s}} \times \prod_{k=1}^{K} \frac{\lambda_{pam_{k}}^{N_{k}} e^{-\lambda_{pam_{k}}}}{N_{k}!} \\ &\times \prod_{j=1}^{J} \frac{\Gamma(\nu)}{\Gamma(\pi\nu)\Gamma((1-\pi)\nu)} z_{j}^{\pi\nu-1} (1-z_{j})^{(1-\pi)\nu-1} \\ &\times \prod_{i=1}^{I} \frac{\left(\frac{c}{\tau^{2}}\right)^{c^{2}/\tau^{2}}}{\Gamma\left(\frac{c^{2}}{\tau^{2}}\right)} y_{i}^{c^{2}/\tau^{2}-1} e^{-c/\tau^{2}y_{i}} \end{aligned}$$

• Surface data: $Z_j \stackrel{iid}{\sim} Beta(\mu = \pi, \nu = 15)$

 $\circ \pi \sim Uniform(0,1)$

• Call data: $Y_i \stackrel{iid}{\sim} Gamma(\mu = c, \tau^2 = 10)$ • $c \sim \textit{Uniform}(0, 100)$