

Development of a Minimally-Invasive **Blood Collection Device for Cetaceans**

Cynthia Smith, NMMF

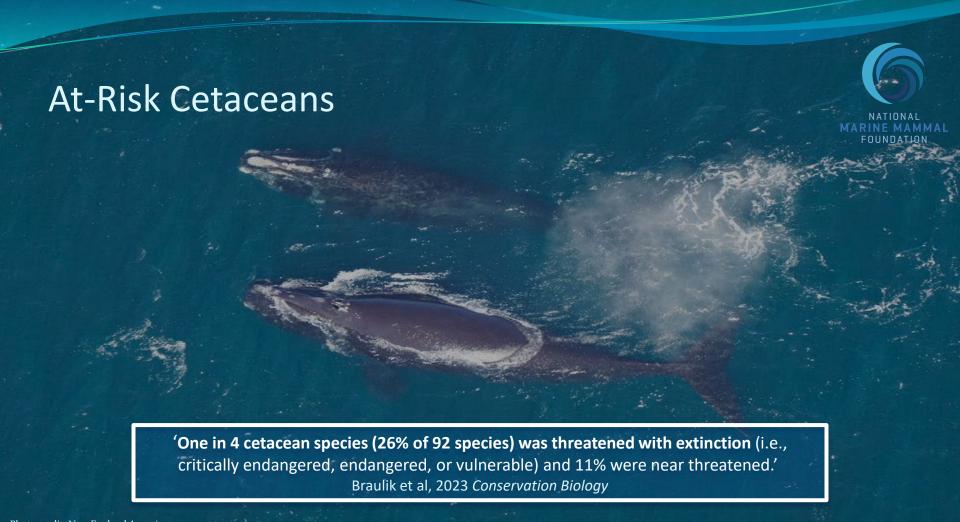
Forrest Gomez, NMMF

Kyle Ross, NMMF

Michael Moore, WHOI

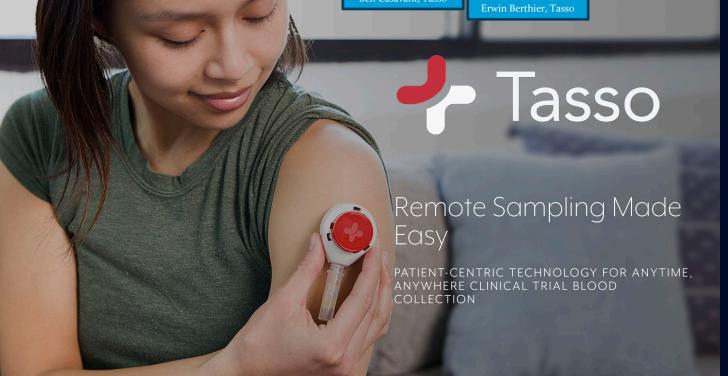
Lori Schwacke, MMC

Bryce Petersen, Tasso

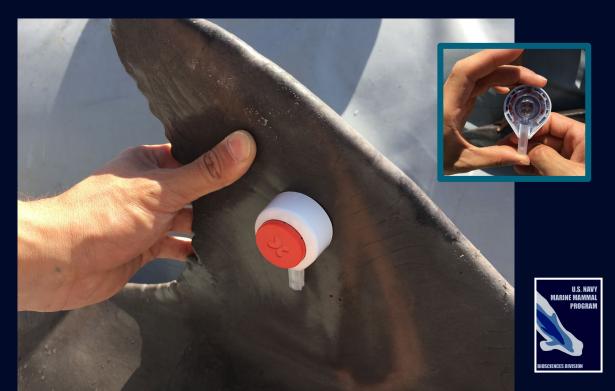


Michael Friend, Tasso

Emily Welch, Tasso



Human Inspiration



Easy Button for Cetaceans?



ONR-Funded Project

Develop a minimally-invasive blood collection device for dolphins, inspired by Tasso's HemoLink, with the long-term goal of developing a remote device capable of collecting blood from a broad-range of free-swimming cetaceans.

Technical Approach

Translating Navy Medicine into Conservation Medicine

Primary Objectives

(1) Conduct an iterative sequence of testing and engineering modifications to Tasso's HemoLinkTM device, with the goal of collecting 200-400 uL of blood from dolphins

Photo Credit:

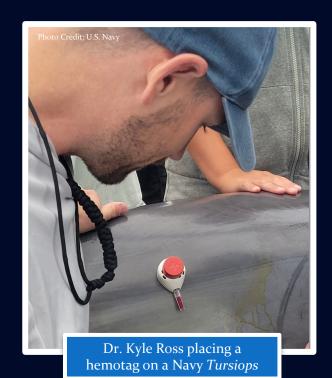
Primary Objectives

NATIONAL MARINE MAMMAL FOUNDATION

(2) Compare blood analytes between blood collected with the prototype device and blood collected by routine venipuncture from the fluke periarterial venous rete (PAVR)

Prototype Development

Adapt Device to Dolphins


- 22 prototypes developed and tested
 - Incision depth ranged from 1.5 to 5 mm, optimized to reach capillary beds
 - Varied anticoagulant placement and volume
- FINAL PROTOTYPE = Hemotag
 - 5 mm incision depth (~width of grain of rice)
 - Both device and needle coated with anticoagulant
- 136 total placements
 - 84 on Navy dolphins
 - 52 on wild dolphins
 - 44 in Barataria Bay, LA (Tursiops truncatus)
 - 8 in Amana Reserve, Brazil (Inia geoffrensis)

Primary Challenges

- Clots (anticoagulant, incision depth)
- Yield (depth, warmth)

Final Device Configuration

- Device adheres to skin via pressure sensitive adhesive film
- Button is pressed, spring loaded lancet/blade (heparin coated) punctures skin and creates incision
- Button is released, blade retracts, and internal vacuum is created to help draw blood out of the incision
- Blood flows through microfluidic channel (LH coated) and into LH tube, assisted by gravity
- Device is peeled off skin, tube is twisted off device and capped

Field Testing

Barataria Bay Bottlenose Dolphins

Field Testing

Amazon River Dolphins

Primary Objectives

NATIONAL MARINE MAMMAL FOUNDATION

(2) Compare blood analytes between blood collected with the prototype device and blood collected by routine venipuncture from the fluke periarterial venous rete (PAVR)

Comparison Study

provided as means with ranges.

Prototype Blood vs PAVR Fluke Blood 29 Dolphins (Tursiops truncatus)

Demographics/Morphometrics	Summary Statistics*
Sex	Female: 55% (n=16) Male: 45% (n=13)
Age (yrs)	21 (6 – 49)
Weight (kg)	187 (143 – 258)
Length (cm)	253.0 (217.5 – 275.0)
Blubber thickness (cm)	1.96 (1.29 – 2.94)
*Median age is provided with range. Weight, length, and blubber thickness are	

Target Analytes: PCV, Total Protein, Total WBC Count, Diff (Neutrophils, Lymphocytes, Monocytes, Eosinophils), Sodium, Potassium, Chloride, Ionized Calcium, TCO2, Glucose, BUN, Creatinine

Comparison Study Results

Crea

Hb

AG

24

24

24

1.5 (1.4-1.7)

12.2 (11.8-12.6)

13.1 (12.3-13.9)

24

24

23

1.5 (1.4-1.7)

12.7 (12.3-13.1)

14.3 (13.5-15.2)

Prototype Capillary Blood vs PAVR Fluke Blood

- Comparable: PCV, TP, WBC, monocytes, eosinophils, glucose, creatinine
- Not comparable: neutrophils, lymphocytes, Na, K, Cl, iCA, TCO2, BUN, Hb, AG

0.575

0.000

0.032

0.976 (0.945-0.99)

* 0.825 (0.632-0.922)

* 0.23 (-0.202-0.586)

0.971 (0.939-0.986)

0.718 (0.495-0.853)

0.194 (-0.165-0.507)

-0.2 (-0.3-0)

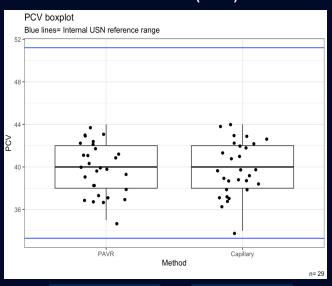
0.3 (-4.8-5.5)

2.7 (-18.9-24.3)

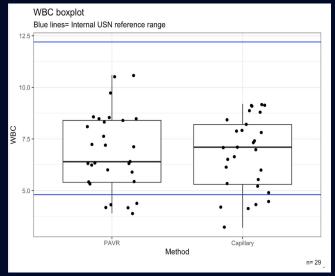
1.1 (1-1.2)

1(0.6-1.4)

0.9 (-0.8-2.5)


Comparison Study Examples

PAVR Fluke Blood vs Capillary Blood from Hemotag



Packed Cell Volume (PCV)

Traditional

Total White Blood Cells (WBC)

Hemotag Traditional

Hemotag

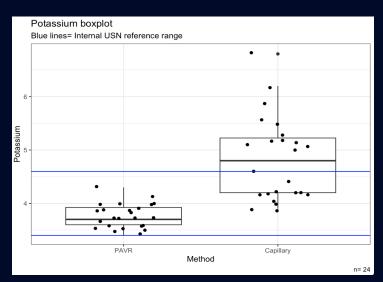
Overview

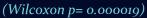
- Developed a minimally-invasive blood collection device prototype for cetaceans that reliably collects ~200uL capillary blood
- Comparison of capillary blood (from Hemotag) to PAVR fluke blood showed agreement for several clinically relevant values, including:
 - PCV (p= 0.76)
 - Total WBC count (p= 0.34)
 - Total protein (p= 0.07)
- Successful collection from two species
- Proposal for next phase of development, field testing, waterproofing, skin warming, and adaptation to whales is under review

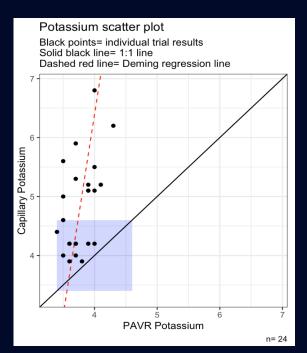
Acknowledgments

Questions?

cynthia.smith@nmmf.org forrest.gomez@nmmf.org kyle.ross@nmmf.org

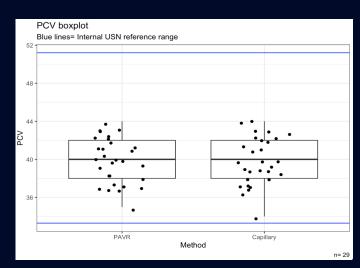


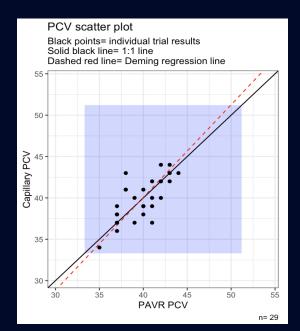



Accomplishments

Comparison Study: Prototype Blood vs PAVR Fluke Blood

Potassium

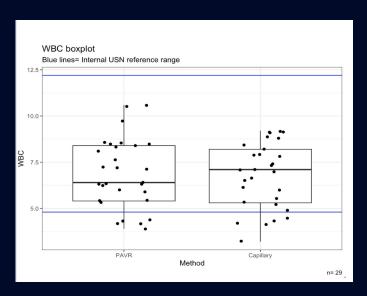


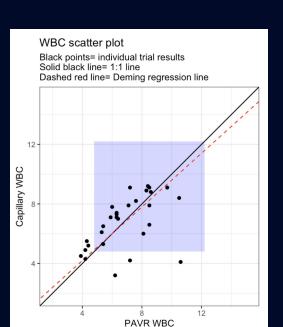

Accomplishments

Comparison Study: Prototype Blood vs PAVR Fluke Blood

PCV

(Wilcoxon p = 0.76)


Deming regression is an errors-in-variables model that fits a line describing the relationship between two variables. Unlike ordinary linear regression, it is suitable when there is measurement error in both variables.


Accomplishments

Comparison Study: Prototype Blood vs PAVR Fluke Blood

Total WBC

(Wilcoxon p = 0.34)

n= 29

