IEc

Atlantic Large Whale Take Reduction Plan:

Introduction to NMFS' Co-Occurrence Model

Presentation to:

Annual Meeting of the Marine Mammal Commission

和。因此已经有10

Research Funded by:

National Marine Fisheries Service

Prepared by:

Industrial Economics, Incorporated 2067 Massachusetts Avenue Cambridge, MA 02140 USA 617/354-0074

May 6, 2015

Goals of the Modeling Effort

- Provide members of the ALWTRT with data to build a common understanding of:
 - The seasonal distribution of commercial fishing gear off the Atlantic coast.
 - The seasonal distribution of North Atlantic right whales, humpback whales, and fin whales in these waters.
- Support development of NMFS' vertical line strategy for the ALWTRP.
- Provide analytic support for NMFS' rulemaking process.

North Atlantic right whale (Eubalaena glacialis) Photo: Georgia Department of Natural Resources

Ideal: Link Model Directly to Goals of ALWTRP

- ALWTRP goals:
 - Near-term: reduce mortality/serious injury below PBR.
 - Long-term: reduce rates of serious injury or mortality to near zero.
- Ideal model would permit NMFS/ALWTRT to evaluate the impact of potential management measures directly against these goals.
- Requires understanding of the factors that determine:
 - *Probability* that an entanglement will occur.
 - Likelihood of serious injury/death in the event of an entanglement.
- P(Entanglement Location, Time) = f(Q gear, Q whales, fishing practices, whale behavior, etc.).
- P(SI/M | Entanglement) = f(characteristics of entangled whale, nature of gear, disentanglement efforts, etc.).
- Current knowledge and available data are inadequate to support reliable assessment of entanglement risks.

Alternative: Examine Indicators of Risk

- Co-occurrence model instead develops relative indicators of risk:
 - The number of commercial gillnet and trap/pot vessels that engage in fishing at a particular location/time of year.
 - The quantity of gear these vessels deploy.
 - Historical data on the seasonal distribution of strategic stocks, by species, in waters subject to the ALWTRP.
 - The potential for members of strategic stocks to be present at places and times that commercial fishing gear is deployed.
- Developing even these indicators requires reliance on data that are incomplete and of inconsistent quality.
- Also requires reliance on professional judgment of NMFS gear experts, members of the TRT, and other stakeholders.

Guidelines for Model Design and Development

- Design the model with sufficient flexibility to:
 - Incorporate data from disparate sources.
 - Analyze a range of management measures (e.g., closures, gear modification requirements).
- Provide information on protected species and fishing activity in a variety of forms:
 - Maps/animations to illustrate spatial/temporal patterns.
 - Tables and charts to support numerical comparisons.
 - Range of indicators of fishing activity/potential for protected species to encounter commercial fishing gear.
- Maintain an open and transparent development process:
 - Involve the TRT in model design, data collection, and the development of key assumptions.
 - Adapt the model to evolve with the TRT's interests and needs.

Development Timeline

2005:	Initial methods development and data collection.
-------	--

- 2006: Working prototype for the Northeast region.
- 2007-2009: Expanded geographic scope/methods refinement.
- 2010: Module for analysis of management scenarios.
- 2011-2012: Analysis of TRT proposals. Documentation and peer review.
- 2013: Analysis of proposed rule. Draft Environmental Impact Statement.
- 2014: Analysis of final rule. Final Environmental Impact Statement.
- 2014-2015: Analysis of exemption proposals. Draft and Final Environmental Assessment.

Model Scope and Resolution

- Software: MS Access/ArcGIS.
- Fisheries:
 - American lobster.
 - Sink and anchored gillnets.
 - Blue crab.
 - Other trap/pot (e.g., black sea bass).
- Protected species:
 - North Atlantic right whale.
 - Humpback whale.
 - Fin whale.
- Geographic resolution:
 - 1-minute grid cells (analysis of fishing activity and gear distribution).
 - 10-minute grid cells (SPUE, cooccurrence indicator and mapping).
- Temporal resolution: monthly.

Geographic Scope: All waters subject to the requirements of the ALWTRP.

Conceptual Overview

Data Sources: Vessel Activity - Federal

- Northeast Vessel Trip Report (VTR) data.
 - Lobster, blue crab, other trap/pot (OTP), gillnet.
 - Indicates location to nearest minute of longitude/latitude.
- NMFS Permit data by Lobster Management Area.
- Southeast Logbook data.
 - Blue crab, other trap/pot, gillnet.
 - Report trip location to nearest degree of longitude/latitude.

Data Sources: Vessel Activity - State

- Obtained via outreach to representatives of state fishery management agencies on TRT.
- Includes exempt and nonexempt waters.
- Sources vary by state:
 - Trip reports.
 - Monthly catch reports.
 - Permit data and dealer reports.
 - Surveys.
- Typically indicates location by state management zone.

Illustrative Results: Vessel Activity

2010/2011 Northeast Baseline (Monthly Average) Estimated Number of Active Vessels ~ All Fisheries

Data Limitations: Location of Vessel Activity

LMA 3

000

- Northeast VTR "average" location.
- Southeast Logbook coarse resolution.
- Federal lobster permits impose no trip reporting requirements.
 - Forces reliance on permit data for "lobster-only" vessels.
 - Activity associated with these vessels is assumed to be evenly distributed throughout each LMA - in each case, a very broad area.
- State sources often coarse.

SUBJE	SUBJECT TO TRIP REPORT REQUIREMENTS (JULY 2011)			
Area	Fed Vessels without VTR Requirements	Total Federal Vessels	Share of LMA's Active Vessels	
LMA 1	1,071	1,217	88%	
LMA 2	73	129	57%	

21

7

60

24

ESTIMATE OF ACTIVE LOBSTER VESSELS NOT

36%

29%

Vertical Line Use

- Estimates of vertical line use are based on "model vessel" approach:
 - Each model vessel is designed to represent a group of vessels that share similar gear configurations.
 - The model currently incorporates ~300 model vessels.
- Users can assign model vessels to a suite of regions, including:
 - Lobster Management Areas.
 - ALWTRP trap/pot areas.
 - Federal waters off the coast of Maine delineated by distance from shore.
 - State waters (exempt and non-exempt); and
 - State fishery management areas (where available).

Variables that Characterize Model Vessels

- Trap/pot model vessels:
 - Total traps fished.
 - Number of traps per trawl.
 - Number of endlines (i.e., buoy lines) per trawl.
 - Length of groundline between traps.
 - Number of anchors per trawl.
 - Length of anchor lines.
- Gillnet vessels:
 - Total strings fished.
 - Net panels per string.
 - Endlines per string.
 - Number of anchors per string.
 - Length of anchor lines.

Data Sources: Model Vessels - Federal Waters

- Gillnet:
 - Based on Northeast Domestic Fisheries Observer Program data, 2009-2011.
 - Differentiated by region (Northeast and Mid-Atlantic/Southeast).
- Lobster:
 - Based on best professional judgment (BPJ) NMFS gear specialists.
 - Differentiated by region (Northeast nearshore, Mid-Atlantic nearshore, and offshore).
 - For nearshore waters off Maine and Massachusetts, also draw on state reports and surveys.
- Blue crab:
 - Mid-Atlantic average of configurations reported for ocean waters under DE, MD, VA, or NC jurisdiction.
 - Southeast average of configurations reported for ocean waters under SC, GA, or FL jurisdiction.

Data Sources: Model Vessels - Federal Waters

- Other trap/pot: based on BPJ of NMFS gear specialists and/or TRT members for specified region/fishery.
 - Northeast state waters shrimp.
 - Northeast nearshore waters scup, black sea bass, shrimp, hagfish, and conch/whelk.
 - Northeast offshore waters hagfish and red crab.
 - Mid-Atlantic nearshore waters- black sea bass (north and south of Cape Hatteras), scup, and conch/whelk.
 - Mid-Atlantic offshore waters hagfish and red crab.
 - Southeast nearshore black sea bass.
 - Southeast offshore waters black sea bass.

Data Sources: Model Vessels - State Waters

- Development of model vessels for state waters draws on best available information from each state.
- Obtained via outreach to commercial fishermen and representatives of state fishery management agencies on TRT.
- These individuals have reviewed and commented on IEc's

STATE	SOURCE	STATE	SOURCE
ME	Survey	DE	Reporting
NH	Reporting	MD	Reporting/BPJ
MA	Reporting/Survey	VA	Reporting
RI	Reporting	NC	Survey/BPJ
СТ	Reporting	SC	Reporting
NY	Survey/BPJ	GA	Survey
NJ	BPJ	FL	Reporting

documentation of the data, assumptions, and methods employed to estimate vertical line use in their states.

Illustrative Results: Northeast

Annual Average Estimated Number of Vertical Lines ~ All Fisheries

Illustrative Results: Mid-Atlantic

Annual Average Estimated Number of Vertical Lines ~ All Fisheries

Illustrative Results: Southeast

Annual Average Estimated Number of Vertical Lines ~ All Fisheries, Non-exempt Waters

Data Limitations: Model Vessels

- Reporting on gear configurations/vertical line use in most fixed gear fisheries is not routinely required.
- For several areas/fisheries, assumptions concerning gear configurations are based partly or completely on professional judgment.
- In some instances (e.g., Maine), periodic surveys have provided a higher degree of resolution on gear configurations.
- Other states (e.g., Massachusetts) have conducted surveys on vertical line use, providing a basis for calibrating gear configuration assumptions.
- Still others (e.g., New Hampshire) are considering including vertical line use as a reporting requirement.
- Maintaining such efforts and emulating them elsewhere is necessary to generate better data on vertical line use.

Data on Seasonal Distributions of Whales

- Source: North Atlantic Right Whale Consortium (NARWC).
- NARWC draws on an amalgamated dataset of shipboard and aerial surveys that meet the following minimum standards:
 - Provide sufficient records of the survey platform's time and position to reconstruct its trackline;
 - Have been conducted with at least one trained observer who recorded periods of dedicated observation or no observation;
 - Report the whale species, group size, and position for each sighting;
 - Provide data on sightings conditions.
- Only includes records that meet NARWC's standards for acceptable sightings conditions.
- Dataset provided for modeling purposes only includes sightings of live whales, and excludes records in which the identification of the species is uncertain.

Data on Seasonal Distributions of Whales (cont.)

- Dataset incorporates records dating back to late 1978 (CETAP) and is periodically updated to include most recent surveys.
- Provides following information by location (10-minute grid cell) and month:
 - Effort (total kilometers surveyed);
 - Sightings (individuals of each species observed);
 - SPUE, i.e., individuals of each species observed per 1000 kilometers of valid effort.
- Model can present SPUE on an absolute or relative basis, indexed on a scale of 0 to 1000.
- Dataset provided for modeling purposes includes sightings of right, humpback, and fin whales.
- For management purposes, TRT and NMFS have chosen to develop recent regulatory measures based on the distribution of right whales and humpback whales.

Survey Effort & SPUE Scores: Northeast

Right Whale (Monthly Average)

Fin Whale (Monthly Average)

Humpback Whale (Monthly Average)

Effort (Cumulative Across all Years)

Survey Effort & SPUE Scores: Mid-Atlantic

Right Whale (Monthly Average)

Fin Whale (Monthly Average)

Humpback Whale (Monthly Average)

Effort (Cumulative Across all Years)

Survey Effort & SPUE Scores: Southeast

Right Whale (Monthly Average)

Fin Whale (Monthly Average)

Humpback Whale (Monthly Average)

Effort (Cumulative Across all Years)

Data Limitations: Whale Sightings

- Data are not precise:
 - Dataset gives equal weight to sightings reported from survey platforms - airplanes and ships - that are known to differ with respect to search efficiency.
 - Dataset does not adjust SPUE values to account for variation in search efficiency across species.
- Data are incomplete:
 - Survey effort in some areas/months is low or non-existent.
 - Opportunistic sightings indicate the presence of whales in some of these areas/months.
 - Sensitivity analysis developed for most recent EIS adjusted SPUE based on opportunistic sightings; showed relatively minor effect for the alternatives under consideration.
 - Other/emerging sources (e.g., acoustic data) are of growing interest to the TRT.

Co-Occurrence of Whales and Vertical Line

- Model provides a *relative indicator* of the potential for whales to encounter gear in different areas and at different times of year: the "co-occurrence" score.
 - All SPUE and vertical line values are indexed on a scale of 0 to 1,000.
 - For each grid cell, the indexed values are then multiplied to generate a combined indicator score, which may range in value from 0 to 1 million.
- The model can generate co-occurrence scores for individual whale species or for any combination of the three.
- For management purposes, NMFS and the TRT have chosen to evaluate recent regulatory measures based on their effect on cooccurrence scores for right whales and humpback whales, combined.

Illustrative Results: Northeast

Annual Average Co-occurrence of Vertical Lines and RW/HW

~ All Fisheries, Non-exempt Waters

Illustrative Results: Mid-Atlantic

Annual Average Co-occurrence of Vertical Lines and RW/HW ~ All Fisheries, Non-exempt Waters

Illustrative Results: Southeast

Annual Average Co-occurrence of Vertical Lines and RW/HW ~ All Fisheries, Non-exempt Waters

Limitations: Co-Occurrence Scores

- Co-occurrence scores provide an imperfect basis for characterizing the potential for a whale to encounter vertical line.
 - Scores vary linearly with vertical line scores and SPUE scores.
 - The probability of an encounter is unlikely to vary in strict, direct proportion to these measures.
- The score does not address the probability of serious injury or death in the event of an entanglement.
- Co-occurrence scores are subject to all of the limitations in the underlying data cited above.

Advantages of Approach

- Makes transparent use of available data and helps drive investments in improving data.
- Provides a consistent basis for comparing the relative impact of alternative management measures.
- Facilitated development of Draft and Final EIS for Vertical Line Rule.
- Also facilitated rapid analysis of proposed changes to the rule in 2014 and 2015.
- Has improved the effectiveness of the TRT:
 - Better understanding of what is known and not known about the distribution of protected species and commercial fishing gear.
 - Improved basis for dialogue among stakeholders.

Lessons Learned

- Developing a model within a TRT construct requires:
 - Consistent support from NMFS management.
 - Commitment to transparency in working with the TRT.
 - Willingness to receive and act on constructive criticism.
 - Persistent effort to harness TRT's knowledge and expertise.
- When working with imperfect data:
 - Acknowledge data limitations early and often and when possible, press for better data.
 - Maintain flexibility needed to work with data from disparate sources.
 - Seek improvements through development of relationships with key stakeholders.
 - Update data regularly to capture changes over time.
 - Stay open to new ideas.

EC INDUSTRIAL ECONOMICS, INCORPORATED

617.354.0074